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Abstract— This paper presents a global optimization ap-
proach to the structured H∞ sensitivity problem. The problem
is formulated as a min/max optimization problem, and is
solved with a branch and bound algorithm based on interval
arithmetic. The method is compared with other existing H∞
synthesis methods and results are discussed.

I. INTRODUCTION

The H∞ synthesis [20] is a method that formulates
performance and robustness objectives as an optimization
problem. The first methods developed to synthesize a con-
troller from the H∞ formulation [7], [6] met difficulties to
reach a large audience since synthesized controllers cannot
be implemented efficiently in practice. Indeed, these methods
provide full order controllers which have to be truncated by
order reduction or stucturation [17].

The synthesis of fixed order controllers, thus workable in
real cases, is a challenging problem when meet robustness
and performance constraints. The emergence of efficient
methods to solve Linear Matrix Inequality problems (LMI)
has encouraged formulating these constraints as LMI [4],
[15], [8]. However, some problems cannot be cast into LMI
and require other optimization methods to be solved, such
as convex-concave optimization [9] or non-smooth optimiza-
tion [5], [1].

Global optimization [11] approaches present a major in-
terest for non-convex problems. Indeed, global optimization
methods provide an enclosure of the global optimum of
a problem. Furthermore, computation times of global op-
timization methods are no more prohibitive due to a lot
of studies [14], [2] to improve the convergence of global
optimization algorithms. We choose to approach the H∞
sensitivity problem under a structural constraint on the con-
troller with global optimization algorithm based on interval
arithmetic to cope with the non-convexity of this problem.

This paper is organized as follows. Section II proposes a
definition of the H∞ problem and the H∞ sensitivity prob-
lem. Section III introduces interval arithmetic and proposes
an algorithm to solve the H∞ sensitivity problem. Section IV
compares our results to those obtained with two other H∞
synthesis methods. Section V concludes this paper.
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II. STRUCTURED SYNTHESIS UNDER H∞ CONSTRAINTS

In this section, we recall the H∞ synthesis problem.
Then, we show how performance and robustness constraints
can be expressed as H∞ constraints and we introduce the
H∞ sensitivity problem. Finally, we introduce the notion
of structured controller and we formulate the problem we
propose to solve.

A. H∞ problem

The H∞ synthesis problem can be defined as proposed
in [19]. Given an Linear Time Invariant (LTI) system P and
a set K of LTI systems, find a controller from K which is a
solution to the problem:

minimize
K∈K

||F (P,K)||∞
subject to K internally stabilizes P

(1)

where F (P,K) is the Linear Fractional Transform (LFT) that
describes the closed loop system represented in Figure 1. In
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Fig. 1. Interconnected systems

Figure 1, w represents the external inputs, z the error or
performance outputs, u the control inputs and y the measure
outputs. F (P,K) has the following frequency representation

F (P,K) =

Tw→z1(s)
...

Tw→zp(s)

 (2)

where Tw→zj (s) = (Tw1→zj (s), ..., Twn→zj (s)). Twi→zj (s)
represents the channel from the ith external input to the jth

error output. s = iω denotes the Laplacian variable, where
i is the imaginary unit and ω ≥ 0 the pulsation.
Problem 1 was solved with the DGKF algorithm [6]
based on the resolution of Ricatti equations, and was later
reformulated as a Linear Matrix Inequalities problem [7].



B. From H∞ constraints to H∞ problem

In practice, Problem 1 is formulated from H∞ constraints.
Consider a LTI system G(s) and a controller K(s) in a
tracking error regulation loop as shown in Figure 2, where
e represents the tracking error signal, u the control, y the
measure, r the reference, d the disturbance and n the noise.
A signal z̃i = Wi(s)zi denotes the weighted counterpart of
the output signal zi.
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Fig. 2. H∞ sensitivity approach.

The H∞ norm of a LTI system that maps w ∈ L2 into
z ∈ L2 represents the maximal gain of this system.

||T ||∞ = max
w 6=0

||z||2
||w||2

= sup
ω

√
λ(T (iω)T (iω)∗), (3)

where λ is the greatest eigenvalue and T (iω)∗ is the her-
mitian transpose of T (iω). Thus, minimizing ||T ||∞ means
minimizing the maximal response of the system to inputs w.
The principle of H∞ synthesis is to minimize infinity norm
of objective channels Tw→z̃i(s). Error outputs e, u and y
are weighted with rational transfer functions W1(s), W2(s)
and W3(s), such as non-desired behaviors of the closed loop
system are penalized. For example, a non-desired behavior
may be an important tracking error signal e at low fre-
quencies (steady state). In this case, W1(s) penalizes the
sensitivity function Tw→e(k, s) at low frequencies but not at
high frequencies where noise n occurs. An example of robust
constraint would be to minimize the action of actuators at
high frequencies. Thus, W2(s) would penalize Tw→u(s) at
these frequencies.
Once weighting functions Wi(s) are defined, the objective is
to find K(s) that minimizes every objectives ||Tw→z̃i(s)||∞
all at once, so that the closed loop system offers the desired
behavior. In addition, K(s) must internally stabilize the
closed loop system.
In practice, H∞ performance and robustness constraints are
expressed as bounds on the gain of objective channels. These
bounds are frequency templates designed from user speci-
fications, and represent the inverse of weighting functions

Wi(s):

∀ω,
√
λ(Tw→zi(iω)Tw→zi(iω)∗) ≤ |W−1

i (s)|
⇐⇒ ||Tw→zi(s)Wi(s)||∞ ≤ 1

⇐⇒ ||Tw→z̃i(s)||∞ ≤ 1

(4)

H∞ constraints can be interpreted as a frequency dependent
upper bound on the ratio between an error output and inputs.
Ensuring that every H∞ constraints are respected can be
formulated as a Constraints Satisfaction Problem (CSP),

find K, subject to


||Tw→z̃1(s)||∞ ≤ 1

...
||Tw→z̃p(s)||∞ ≤ 1

K(s) internally stabilizes P

(5)

This CSP problem can be considered as an optimization
problem, that we call the H∞ sensitivity problem:

minimize
K

max(||Tw→z̃1(s)||∞, ..., ||Tw→z̃p(s)||∞)

subject to K(s) internally stabilizes P
(6)

Indeed, if the minimum of Problem 6 is lower than one, the
solution of Problem 6 is a feasible solution to Problem 5.
The classical way to compute a solution to Problem 5 is to
solve the H∞ problem. The system P (s) is built from G(s)
and the weighting functions Wi(s) as shown in Figure 2.
Then, a solution to Problem 5 can be computed by solving
Problem 9. If ||F (P,K)||∞ is lower than one, then K is a
solution to Problem 5. Indeed,

||F (P,K)||∞ = ||

Tw→z̃1(s)
...

Tw→z̃p(s)

 ||∞
≥ max(||Tw→z̃1(s)||∞, ..., ||Tw→z̃p(s)||∞).

(7)

For example, we can use [6] or [7] to solve the H∞
problem. However, these methods give solutions in the space
of full-order controllers, which means that the order of the
controller is equal to the one of P (s). Moreover, the more
H∞ constraints must be respected, the higher is the order of
P (s). Therefore, controllers computed by these two methods
are usually high orders.

Remark 1: Due to Equation (7), if the minimum of
Problem 9 is greater than one, it does not imply that
Problem 5 has no solution.

C. Structured H∞ problem

In practice low-order controllers, possibly mixed with fil-
ters, are preferred because their dynamics can be interpreted
easily. A structured controller depends on free parameters
k ∈ K, where K denotes the space of controller parameters.
For example, a PID controller depends on kp, ki and kd.

K(k, s) = kp +
ki
s

+ kds, with k = (kp, ki, kd) (8)



As F (P,K) represents the system P (s) interconnected
with K(k, s), its elements Twi→z̃j (k, s) depend on k. The
structured H∞ problem can be formulated as follows:

minimize
k∈K

||F (P,K)||∞
subject to K(k, s) internally stabilizes P

(9)

One method to solve this problem is the non-smooth synthe-
sis [1].
However, to our knowledge , no methods have been proposed
to solve directly Problem 6 under a structural constraint on
the controller. This problem can be expressed as follows,

minimize
k∈K

max(||Tw→z̃1(k, s)||∞, ..., ||Tw→z̃p(k, s)||∞)

subject to K(k, s) internally stabilizes P
(10)

We propose to solve Problem 10 using a global optimization
approach based on interval arithmetic.

III. GLOBAL OPTIMIZATION APPROACH BASED ON
INTERVAL ARITHMETIC

In this section, we show that Problem 10 can be solved in
a guaranteed way using global optimization based on interval
arithmetic. Moreover, a global optimization approach enables
to compute an enclosure of the minimum of the objective
function. Thus a certificate of infeasibility of Problem 5 can
be obtained.
We first introduce interval arithmetic and the notion of
inclusion function [10]. Then, we reformulate Problem 10
as a min/max problem. After that we show how to tackle
the maximization part of this min/max problem with interval
arithmetic. Finally, we propose a branch and bound algorithm
to solve Problem 10.

A. Interval Arithmetic
An Interval is a closed connected subset of R [10].

Intervals are denoted using boldface letters x. A non-empty
interval x can be represented by its endpoints:

x = [x, x] = {x : x ≤ x ≤ x}

with x ∈ R ∪ {−∞}, x ∈ R ∪ {+∞} and x ≤ x. The set
of intervals is denoted by IR and the set of n-dimensional
interval vectors, also called boxes, is denoted by IRn.
The main advantage of interval arithmetic is the reliability
of computations, in the sense that a guaranteed enclosure
of the result is computed. This inclusion property is the
fundamental theorem of interval arithmetic. Let g : Rn 7→
Rm be a function. An inclusion function g : IRn 7→ IRm of
g is defined as follows,

∀x ∈ IRn, g(x) = {g(x), x ∈ x} ⊆ g(x) (11)

An inclusion function provides an upper and a lower bound
on a function over an interval. Several techniques can be used
to construct an inclusion function of every factorable func-
tion involving +,−, ∗, sin, exp, max,min, ... [16]. Figure 3
illustrates the concept of inclusion function. It is important
to note that g(x) in light gray in Figure 3 is an over
approximation of g(x) displayed in dark gray, and is not
the smallest possible box which encloses g(x).
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Fig. 3. Inclusion function

B. Interval approach of the problem

The computation of ||.||∞ involves dealing with singular
values (see Equation (3)). Unfortunately, an interval arith-
metic approach does not allow to handle efficiently the
computation of singular values. However, it is possible to
avoid this difficulty by reformulating Problem 10. Indeed,
||Tw→zj (k, s)||∞ can be formulated as the maximization of
a scalar-valued function:

||Tw→zj (k, s)||∞ = sup
ω

√
λ(Tw→z̃j (k, iω)Tw→z̃j (k, iω)∗)

= sup
ω

√√√√√√λ(Tw1→z̃j (k, s), ...Twn→z̃j (k, s))

Tw1→z̃j (k, s)
...

Twn→z̃j (k, s)


= sup

ω

√√√√ n∑
i=1

|Twi→z̃j (k, s)|2

(12)

Then, Problem 10 can be reformulated as follows:

minimize
k

sup
ω
f(k, ω)

subject to K internally stabilizes P
(13)

where

f(k, ω) = max(

√√√√ n∑
i=1

|Twi→z̃1(iω, k)|2, ...,

√√√√ n∑
i=1

|Twi→z̃p(iω, k)|2).

(14)

The internal stability constraint is generally expressed as a
LMI [3]. Such a constraint cannot be mixed properly with
a global optimization approach based on interval arithmetic.
However, the stability constraint can be dealt with interval
arithmetic using the Routh criterion on the characteristic
polynomial of the state matrix of F (P,K) [18]. Indeed,
the constraint ”K(k, iω) internally stabilizes P ” can be
reformulated as a set of non-convex constraints on k, denoted
R(k) ≤ 0. The loop shaping problem is formulated as a
constrained min/max problem that can be solved using a
branch and bound algorithm based on interval arithmetic.

C. Enclosure of the objective function

The objective function of Problem 13 involves the compu-
tation of fsup(k) = sup

ω
f(k, ω). To minimize this objective



function using a branch and bound algorithm, we need to
compute a lower and an upper bound of fsup over a box k.
This bound must be as close as possible to the exact range
of fsup to ensure the convergence of the branch and bound
algorithm.

Using interval arithmetic, an inclusion function f of
f(k, ω) can be built. Indeed, the operators +, ∗, abs, √ ,
max are well-defined [11]. In order to use interval arith-
metic, we limit the study of sup

ω
f(k, ω) to a bounded set Ω.

Thus, we obtain the following equation:

∀k ∈ IRn, fsup(k) =

{
sup
ω∈Ω

f(k, ω) : k ∈ k

}
⊆ f(k,Ω).

Unfortunately, the bounds obtained using the inclusion
function directly over Ω are not close enough to fsup(k).
That is why we subdivide Ω into several boxes ωi such as
Ω =

⋃
i

ωi. Thus, we have the following result:

∀k ∈ IRn, fsup(k) ⊆
[
max
i

f(k,ωi),max
i

f(k,ωi)
]
.

f(k, ω)

ω

fsup(k)

fsup(k)

ωi × f(k,ωi)

Fig. 4. Computation of fsup(k).

Figure 4 illustrates the previous equation. Ω is discretized
with non-overlapping intervals and f is evaluated for each
of them. The highest lower bound and upper bound of the
evaluations represented by dotted lines in Figure 4 give a
guaranteed enclosure of fsup(k). Indeed, the function fsup,
defined as follows, is an inclusion function of fsup:

∀k ∈ IRn,fsup(k) =
[
max
i

f(k,ωi),max
i

f(k,ωi)
]
.

D. Global Optimization Algorithm

We propose to solve Problem 13 with a branch and bound
algorithm [11], [13]. We denote µ the global minimum
of Problem 13, K ⊆ K the initial domain of controller
variables, lbµ and ubµ a lower and an upper bound of µ.

The principle of a branch and bound algorithm is to split
K into smaller subsets and eliminate them if they do not
satisfy the stability constraint or if it is certified that they do

not contain the global solution. When the algorithm ends,
we obtain:
• k∗ the best feasible solution found,
• [lbµ, ubµ] a reliable enclosure of the minimum µ,
• A certificate of infeasibility to Problem 5 if no feasible

solution has been found or lbµ > 1.

1: while |ubµ − lbµ| ≥ ε and L 6= ∅ do
2: Extract a box k from L
3: Contract k using [14].
4: Bissect k into k1 and k2.
5: for i = 1, 2 do
6: Compute fsup(ki).
7: if fsup(ki) ≤ ubµ then
8: Add ki in L.
9: end if

10: Choose k ∈ ki that respects R(k) ≤ 0.
11: if fsup(k) < ubµ then
12: Update ubµ and k∗ = k.
13: end if
14: end for
15: Update lbµ = min

k∈L
fsup(k).

16: end while
Algorithm 1: Branch and Bound algorithm.

Algorithm 1 works as follows. A list of boxes L is
initialized with K. At Line 2, the box k with the lowest
lower bound fsup(k) is chosen from L. At Line 3, k is
contracted on its feasible region using [14]. If the result is
not empty, k is bisected in two non-overlapping boxes k1

and k2. For k1 and k2, fsup(ki) is computed at Line 6 using
Section III-C. If fsup(k) > ubµ, it is proved that the global
minimum cannot belong to k, else the box is added to L. At
Line 10, if possible, a point k that stabilizes P (s) is chosen
in k. If fsup(k) is lower than the current value ubµ, k is a
better solution and ubµ is updated.
When Algorithm 1 stops, L contains a set of boxes that con-
tain the global minimizer; [lbµ, ubµ] provides a guaranteed
enclosure of the global minimum µ; k∗ is the best known
solution. If (lbµ > 1) or if (L = ∅)∧ (k∗ = ∅), it is certified
that Problem 5 has no solution.

IV. EXAMPLE

The methodology is applied on a simple example and
compared with methods presented in [1] and [7]. We use
the Matlab Robust Control toolbox where both of them are
implemented.

A. Problem and results

We consider the second order LTI system:

G(s) =
1

s2 + 1.4s+ 1
,

and a PID with a derivative filtering:

K(k, s) = kp +
ki
s

+
kds

1 + s
.



The vector of controller parameters is k = (kp, ki, kd). Each
parameter belongs to [−10, 10], then K = [−10, 10]3 and
the frequency domain is Ω = [10−3, 103]. We consider the
regulation scheme of Figure 2 without input signals d and n.
It means that we have one input signal r and three weighted
outputs z̃1, z̃2 and z̃3. Weighting functions are the following
ones

W1(s) = 10s+100
1000s+1 , W2(s) = 10s+1

s+10 , W3(s) = 100s+1
s+10 .

(15)
The templates of their inverses appear as dotted lines in
Figure 5.
We compute a controller that is a solution of Problem 5.
To do so, we solve Problem 1 with [7], Problem 9 with [1]
and Problem 10 with a global optimization approach. These
methods are denoted respectively by H∞ full, H∞ struct
and Global Optimization (GO) struct in the first column of
Table I that presents the results obtained.
The stop criterion of GO struct method is ε = 0.1. The

Method Cpu (s) ||F (P,K)||∞ max
i

(||Tw→z̃i ||∞)

H∞ full 2 1.0258 1.01611
H∞ struct 80 1.0411 1.04109
GO struct 83 1.0811 0.99782

TABLE I
RESULTS OBTAINED.

second column indicates computation times in second. The
H∞ norm of P (s) interconnected with the controller appears
in the third column (see Figure 2). The value of the objective
function of the sensitivity problem is indicated in the last
column. The H∞ full method gives a 5th order controller
denoted KH∞full, H∞ struct provides the following solu-
tion:

KH∞struct(k, s) = 0.0736 +
0.0969

s
+

0.0305s

1 + s

with our algorithm, we obtain:

KGO(k, s) = 0.0348 +
0.0993

s
+

0.0625s

1 + s

Furthermore, our method gives the following enclosure,
max
i

(||Tw→z̃i ||∞) ∈ [0.905531, 0.997827].

In the sequel, SH∞full = (I +G(s)KH∞full(s))
−1 denotes

the sensitivity function defined with KH∞full, SH∞struct

and Sgo are defined the same way replacing KH∞full

by KH∞struct and KGO in the expression. Similarly, we
defined the complementary sensitivity functions TH∞full =
G(s)KH∞full(s)(I + G(s)KH∞full(s))

−1, TH∞struct(s)
and Tgo(s).

B. Discussion

H∞ full method gives a result rapidly due to the convexity
of the problem. As H∞ structured method is based on
local optimization, we run it 350 times with random start
points such that the computation time is close to the one of
GO structured. Considering ||F (P,K)||∞ criterion, H∞ full

gives a better result than H∞ struct because KH∞full has a
higher order. GO struct gives the worst result, but this method
minimizes max

i
(||Tw→z̃i ||∞) instead of ||F (P,K)||∞ con-

trary to the other two methods. However, if we look at
max
i

(||Tw→z̃i ||∞) criterion, one can remark that only the
GO method is able to compute a solution lower than 1, i.e.
to provide a controller that respects all the three frequency
constraints ||Tw→z̃i(s, k)||∞ ≤ 1, i ∈ {1, 2, 3}. This can be
explained by the fact that both K(k, s) and G(s) act like
low-pass filters and their outputs u and y are both weighted.
This leads to coupled terms in P (s), thus P (s)P (s)∗ has
got non-negligible terms outside its diagonal. Therefore,
minimizing ||P (s)||∞ is a different problem than minimizing
max
i

(||Tw→z̃i ||∞). However, max
i

(||Tw→z̃i ||∞) value of the
three methods are close to each other. This is illustrated by
Figure 5. Bode diagrams of the objective channels given by
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Fig. 5. Respect of frequency constraints.

the three methods are close to the frequency templates of
the weighting functions. One can see that Sfull is above
W−1

1 at low frequencies and KSstruct is above W−1
2 at

high frequencies, which illustrates that max
i

(||Tw→z̃i ||∞)

obtained with H∞ full and H∞ struct are greater than 1.



Although the proportional and derivative coefficients of
controllers computed by H∞ struct and GO struct methods
present significant differences, their Bode diagrams, shown
in Figure 6, are almost the same. The bode diagram of the
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Fig. 6. Bode diagrams of controllers.

controller computed by H∞ full shows a more complex
behavior due to the high order.
Despite the fact that controllers obtained with the three
different methods present almost similar performances, this
example shed a light on the fact that GO approach is
not sensitive to coupled constraints, contrary to classical
approaches which aim to minimize ||P (s)||∞.
In this example, we chose fractional weighting functions
Wi(s) to compare our method with H∞ full and H∞ struct.
However GO method can be extended to the case where the
weighting functions Wi(s) are not rational, provided that
we have an inclusion function of f . One can remark that
if weighting functions are not rational, P (s) is not linear
anymore and the internal stability cannot be ensure with the
Routh criterion. Nonetheless, internal stability of P (s) is not
needed in practice, it suffices that K(s) internally stabilizes
the closed loop system (i.e. without weighting functions on
objective channels).
Furthermore, an interval arithmetic approach allows to deal
with parametric uncertainties. Indeed, if G(p, s) depends on
uncertain parameters p defined as intervals, it is still possible
to compute f(k,p, s) and therefore to run Algorithm 1. En-
suring a performance constraint with parametric uncertainties
has already been investigated with interval arithmetic for
SISO system [12], but our approach is more general and
can be applied to MIMO systems.

V. CONCLUSION

In this paper, we have introduced a method based on
global optimization to solve the sensitivity problem given a
structured controller. We show how to compute a guaranteed
enclosure of the minimum of the loop shaping problem.

Thus, it is possible to provide a certificate of infeasibility
of the sub-optimal problem. We illustrated the advantage
of a global optimization method compared to two classical
approaches with an academic example. Indeed, our approach
considers each weighted outputs separately so that our syn-
thesis method is not sensitive to coupled constraints.
Moreover, the approach proposed in this paper offers new
prospects. It is possible to take parameters uncertainties into
account without modification of the method. In addition,
our method does not restrict the expression of weighting
functions as rational ones.
Even if the computation time can be improved, the proposed
approach opens up new ways to synthesize and analyze
robust controllers.
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