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Min Max problems

Min Max problems appear in:
e Robust control
o Game theory
o Risk management

o Every problem involving uncertainty
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Min Max problem in control

What is control?

e Dynamic system (Robot, Missile, Dam, Washing
machine...).

(]

Actuators (Motor, Steering wheel, Flap, ...).

Sensors (INS, Sonar, Temperature/Pressure sensor, ...).

Reference to follow.

Controller to close the loop.
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Min Max problem in control

Frequency constraint
Bode Diagrams
40 ey —

20 - A

0k

-20

40 -

Magnitude (dB)

-60

-80 -

100 H i H | H R H

10 10 10t 10° 10?
Pulsation (rad/s)

Frequency constraint on e(iw): we want |

to be small

Vw >0, |Troe(K,iw)| < [W(iw)| <= sup(|Tr—e(K, iw)W_l(ioJ)D <1

W)| = |Trse(K, iw)|



Min Max problem in control

Min max problem formulation

Stability constraint:
@ The closed loop system is stable <= R(K) < 0 (Routh
criterion).

e R(K) <0 is a non-convex rational system.

Problem formulation

min sup | Ty (K, iw)W ! (iw)|,
K

We want:
@ an enclosure of the minimum.
@ reliable computation.
— Interval Based Branch and Bound Algorithm
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Min max problem formulation

We search z* € X’ such that sup f(z*,y) is minimal.
yey

Constrained Min max problem

min su z,vy),
mip sup f(z,y)

st. Cy(xz) <0
Czy(xay) <0

e X and Y are bounded.

e f,C; and C,y can be evaluated with interval computation.
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Main Branch and bound algorithm: minimization

Interval Based Branch and Bound Algorithm

Init: push X in £

© Choose a box  from L.
@ Contract  w.r.t C;(x) < 0 using CSP techniques.

@ Compute [lbg, uby| an enclosure of sup f(x, y).
yey

@ Try to find a good feasible solution in .
@ Update best current solution.

@ Bisect @ into @7 and x9, push x; and x5 in L.

Stop criterion: width(|minlb,, min wubg|) <e.
= ([mEE :c xel,C(x)<0 w]) -
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Secondary Branch and Bound algorithm: maximization
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Secondary Branch and Bound algorithm: maximization
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Secondary Branch and Bound algorithm: maximization
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Secondary Branch and Bound algorithm: maximization
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Secondary Branch and Bound algorithm: maximization
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Global optimization for Min max problems

Inclusion properties

Let be  C X and y C ), we denote

fmam(x) = {Sgp f(a:,y),ac € m}

Yemaz = {y € yEx cx,y maximizes f($>y)}
Let be 1 C x.

Proposition

o fmam(xl) - fmax(m)

° yml,mam C ym,mam
0 Cr(x) <0 = Cp(x1) <0
o Copyl(m,y) <0 = Cypy(z1,9) <0
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Main Branch and bound with Inclusion properties
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Main Branch and bound with Inclusion properties
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Main Branch and bound with Inclusion properties

f(x17‘)lk

ubg -1

lbg -1

A4

Cacy (1717 Ja

\ 4

Y




Global optimization for Min max problems

Main Branch and bound with Inclusion properties

f(x17‘)lk

ubg -1

lbg -1

A4

Cacy (1717 Ja

\ 4

Y




Global optimization for Min max problems

Main Branch and bound with Inclusion properties

f(x17‘)lk

ubg -1

lbg -1

A4

Cacy (1717 Ja

\ 4

Y




Global optimization for Min max problems

Main Branch and bound with Inclusion properties

f(x17‘)lk

ubg -1

lbg -1

A4

Cacy (1717 Ja

\ 4




Global optimization for Min max probl

Main Branch and bound with Inclusion properties

f(x17‘)lk

ubg -1

lbg -1

A4

Cacy (1717 Ja

\ 4




Global optimization for Min max problems

Main Branch and bound with Inclusion properties

f(x17‘)lk

ubg -1

lbg -1

A4

Cacy (1717 Ja

\ 4




Global optimization for Min max problems

Main Branch and bound with Inclusion properties

f(x17‘)lk

ubg -1

by -1

A4

Cacy (1717 Ja

\ 4

Y




Global optimization for Min max problems

Main Branch and bound with Inclusion properties

f(x17‘)lk

ubg -1

by -1

Cwy(l'h ) a

[yzl,maz]




Global optimization for Min max problems

Main Branch and bound
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Main Branch and bound
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Benchmark

Examples

Problems Obj. func. rdim | ydim | C; | Cpy
Article example]1] other 2 2 no | no
Article example[3] polynomial 1 1 no | yes
Article example[3] | trigonometric 1 1 no | yes

Control rational 3 1 yes | no
Control rational 4 1 yes | no
Control rational 2 1 yes | no
Control rational 4 1 yes | no
Control rational 4 1 yes | no
Risk Management[2] | polynomial 2 2 no | no
Risk Management[2] | polynomial 2 2 no | no
Risk Management[2] | polynomial 2 2 no | no
Risk Management[2] | polynomial 2 3 no | no
Risk Management[2] | polynomial 3 3 no | no




Benchmark

Algorithm features

Algorithm is tested with four features:
@ 10 bisections are performed in the maximization problem,
inclusion properties used — B 10.
@ 100 bisections are performed in the maximization problem,
inclusion properties used — B 100.
@ 1000 bisections are performed in the maximization
problem, inclusion properties used — B 1000.

@ 10 bisections are performed in the maximization problem,
inheritance properties not used — NH 10.
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Performance profile: cpu time
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Benchmark

Performance profile: number of function evaluation

—B 10

50 =B 100

B 1000
40
= NH 10

ratio alpha



Conclusion

@ Conclusion



Conclusion

Conclusion

@ Solver for non-convex problems (non-convex objective
function and non-convex constraints).

o Taking advantage of Inclusion properties save computation
time.

o Finding the best number of bisection is difficult.

Next steps:
o Test the algorithm on more examples.

e Improve convergence time (monotonicity tests, affine
arithmetic, ...).

e How to find the number of bisection?
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Conclusion

[4 E. Carrizosa and F. Messine. A branch and bound method
for global robust optimization. Proc. 12th global
optimization workshop (Mdlaga, Spain, September 2014),
2014.
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Design and Applications to Risk Management. Princeton
University Press, 2002.
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2008.
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