Global Optimization of continuous MinMax problem

Dominique Monnet, Jordan Ninin, Benoît Clément LAB-STICC, UMR 6285 / ENSTA-Bretagne

Min Max problems

Min Max problems appear in:

- Robust control
- Game theory
- Risk management
- Every problem involving uncertainty

Plan

- Min Max problem in control
- 2 Global optimization for Min max problems
- 3 Benchmark
- 4 Conclusion

• Dynamic system (Robot, Missile, Dam, Washing machine...).

G

- Dynamic system (Robot, Missile, Dam, Washing machine...).
- Actuators (Motor, Steering wheel, Flap, ...).

- Dynamic system (Robot, Missile, Dam, Washing machine...).
- Actuators (Motor, Steering wheel, Flap, ...).
- Sensors (INS, Sonar, Temperature/Pressure sensor, ...).

- Dynamic system (Robot, Missile, Dam, Washing) machine...).
- Actuators (Motor, Steering wheel, Flap, ...).
- Sensors (INS, Sonar, Temperature/Pressure sensor, ...).
- Reference to follow.

- Dynamic system (Robot, Missile, Dam, Washing) machine...).
- Actuators (Motor, Steering wheel, Flap, ...).
- Sensors (INS, Sonar, Temperature/Pressure sensor, ...).
- Reference to follow.

- Dynamic system (Robot, Missile, Dam, Washing) machine...).
- Actuators (Motor, Steering wheel, Flap, ...).
- Sensors (INS, Sonar, Temperature/Pressure sensor, ...).
- Reference to follow.
- Controller to close the loop.

Frequency constraint

Frequency constraint on $e(i\omega)$: we want $|\frac{e(i\omega)}{r(i\omega)}| = |T_{r\to e}(K, i\omega)|$ to be small

$$\forall \omega \geq 0, |T_{r \to e}(K, i\omega)| \leq |W(i\omega)| \iff \sup_{\omega} (|T_{r \to e}(K, i\omega)W^{-1}(i\omega)|) \leq 1$$

Min max problem formulation

Stability constraint:

- The closed loop system is stable $\iff R(K) \leq 0$ (Routh criterion).
- R(K) < 0 is a non-convex rational system.

Problem formulation

$$\begin{cases} \min_{K} \sup_{\omega} |T_{r \to e}(K, i\omega)W^{-1}(i\omega)|, \\ s.t. \quad R(K) \le 0 \end{cases}$$

We want:

- an enclosure of the minimum.
- reliable computation.
- → Interval Based Branch and Bound Algorithm

Plan

- Min Max problem in control
- 2 Global optimization for Min max problems

Min max problem formulation

We search $x^* \in \mathcal{X}$ such that $\sup_{y \in \mathcal{Y}} f(x^*, y)$ is minimal.

Constrained Min max problem

$$\begin{cases} \min_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} f(x, y), \\ s.t. \quad C_x(x) \le 0 \\ C_{xy}(x, y) \le 0 \end{cases}$$

- \mathcal{X} and \mathcal{V} are bounded.
- f, C_x and C_{xy} can be evaluated with interval computation.

Main Branch and bound algorithm: minimization

Interval Based Branch and Bound Algorithm

Init: push \mathcal{X} in \mathcal{L}

- Choose a box x from \mathcal{L} .
- ② Contract \boldsymbol{x} w.r.t $\mathcal{C}_{\boldsymbol{x}}(\boldsymbol{x}) \leq 0$ using CSP techniques.
- **3** Compute $[lb_x, ub_x]$ an enclosure of sup $\mathbf{f}(x, y)$.
- Try to find a good feasible solution in x.
- **1** Update best current solution.
- **6** Bisect \boldsymbol{x} into \boldsymbol{x}_1 and \boldsymbol{x}_2 , push \boldsymbol{x}_1 and \boldsymbol{x}_2 in \mathcal{L} .

Stop criterion: $width([\min_{x \in \mathcal{L}} lb_x, \min_{x \in \mathcal{L}. \mathcal{C}(x) < 0} ub_x]) \le \epsilon.$

Inclusion properties

Let be $x \subseteq \mathcal{X}$ and $y \subseteq \mathcal{Y}$, we denote

$$\mathbf{f}_{max}(\boldsymbol{x}) = \{ \sup_{y} f(x, y), x \in \boldsymbol{x} \}$$

$$\mathbf{y}_{x,max} = \{ y \in \mathcal{Y} | \exists x \in \mathbf{x}, y \text{ maximizes } f(x,y) \}$$

Let be $x_1 \subseteq x$.

Proposition

- \bullet $\mathbf{f}_{max}(\boldsymbol{x}_1) \subseteq \mathbf{f}_{max}(\boldsymbol{x})$
- $ullet y_{x_1.max} \subseteq y_{x.max}$
- $\bullet \ \mathcal{C}_x(x) < 0 \implies \mathcal{C}_x(x_1) < 0$
- $C_{xy}(\boldsymbol{x},\boldsymbol{y}) < 0 \implies C_{xy}(\boldsymbol{x}_1,\boldsymbol{y}) < 0$

Plan

- Min Max problem in control
- 2 Global optimization for Min max problems
- 3 Benchmark
- 4 Conclusion

Examples

Problems	Obj. func.	$x \dim$	$y \dim$	\mathcal{C}_x	\mathcal{C}_{xy}
Article example[1]	other	2	2	no	no
Article example[3]	polynomial	1	1	no	yes
Article example[3]	trigonometric	1	1	no	yes
Control	rational	3	1	yes	no
Control	rational	4	1	yes	no
Control	rational	2	1	yes	no
Control	rational	4	1	yes	no
Control	rational	4	1	yes	no
Risk Management[2]	polynomial	2	2	no	no
Risk Management[2]	polynomial	2	2	no	no
Risk Management[2]	polynomial	2	2	no	no
Risk Management[2]	polynomial	2	3	no	no
Risk Management[2]	polynomial	3	3	no	no

Algorithm features

Algorithm is tested with four features:

- 10 bisections are performed in the maximization problem. inclusion properties used \rightarrow B 10.
- 100 bisections are performed in the maximization problem, inclusion properties used \rightarrow B 100.
- 1000 bisections are performed in the maximization problem, inclusion properties used \rightarrow B 1000.
- 10 bisections are performed in the maximization problem, inheritance properties not used \rightarrow NH 10.

Performance profile: cpu time

Benchmark

Performance profile: number of function evaluation

Plan

- Min Max problem in control
- 2 Global optimization for Min max problems
- 3 Benchmark
- 4 Conclusion

Conclusion

- Solver for non-convex problems (non-convex objective function and non-convex constraints).
- Taking advantage of Inclusion properties save computation time.
- Finding the best number of bisection is difficult.

Next steps:

- Test the algorithm on more examples.
- Improve convergence time (monotonicity tests, affine arithmetic, ...).
- How to find the number of bisection?

- E. Carrizosa and F. Messine. A branch and bound method for global robust optimization. *Proc. 12th global optimization workshop (Málaga, Spain, September 2014)*, 2014.
- B. Rustem and M. Howe. Algorithms for Worst-Case Design and Applications to Risk Management. Princeton University Press, 2002.
- M. Sainz, P. Herrero, J. Armengol, and J. Vehí. Continuous minimax optimization using modal intervals. *Journal of Mathematical Analysis and Applications*, 339(1):18–30, 2008.