Context	Control issue	Optimisation based control	AUV Control Application	Conclusions
Control for Robots SHARC 2016				
		Optimization base some solutions for th		
		Benoît	CLEMENT	
		June,	30, 2016	
		ENSTA Bretagne		
B. Cleme		Control for Rol	< < >> < < < >> <	E → (E → E →) < (1 / 5

Control issue Op 000000 00

Optimisation based control

AUV Control Application

Conclusions

Control for Robots

Control point of view

SHARC 2016

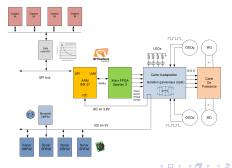
Context

Control issue Problem Statement Some answers... wit drawbacks

Optimisation based control Global Optimizatio

General pattern for global optimization Application to H_{∞} control

AUV Contro Application


CISCREA: description and challenges

Robust contro Results

Conclusions

Today is dedicated to answer few questions with a control point of view in Robotics.

- Which Robotics?
- How to control a Robot?
- Are the GNC algorithms are a big issue?

▶ ∢ ⊒

	000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	Conclusions
Control for Robots	Outline			
SHARC 2016 Context Control issue Problem Statement Some answers, with drawbacks	• Pro	ext rol issue oblem Statement me answers with dra	whacks	
Optimisation based control Global Optimization General pattern for global optimization Application to H _{ac} control AUV Control Application	3 Optin • Glo • Ge	nisation based control obal Optimization for globa pattern for globa plication to H_{∞} control	l optimization	
CISCREA: description and challenges Robust control Results Conclusions	• CIS	Control Application SCREA: description an bust control sults	d challenges	
	5 Conc	lusions	< • > < • > <	≣►∢≣► ≣ ⁄)q(

AUV Control Application

Optimisation based control

Control issue

Optimisation based control

AUV Control Application

< □ > < 凸

∃ ► < ∃ ►

Conclusions

Control for Robots

SHARC 2016

Context

- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control Global Optimizatio
- global optimizatio Application to H_{∞}
- AUV Contro Application
- CISCREA: description and challenges
- Robust contro Results

Conclusions

- OSM: Teaching and Research Department
- Large scope of teaching activities: hydrography, oceanography, embedded electronics, signal processing, information technology, computer science, robotics, etc.

Ocean Senging and Mapping at ENSTA Bretagne

- Research topics:
 - Hydrography/Oceanography
 - Underwater robotics
 - Sonar systems
 - Data Processing
- Application field: Maritime environment, civilian and defense.

Control issue

Optimisation based control

AUV Control Application

Conclusions

Control for Robots

SHARC 2016

Context

- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control
- Global Optimization General pattern for global optimization Application to H_{∞}

AUV Contro Application

- CISCREA: description and challenges
- Robust control Results
- Conclusions

Robotics issues:

Focus on Robotics

- Guidance, Navigation and Control
- Group of Robots: interaction management
- Localisation
- Academic tools:
 - Interval Analysis
 - Data processing
 - Global Optimization
 - Robust Control

Optimisation based control

AUV Control Application

< □ > < 凸

Conclusions

Teaching

Robots SHARC 2016

Control for

Context

- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control Global Optimization General pattern for global optimization
- Application to H_o control

AUV Contro Application

CISCREA: description and challenges

Robust control Results

Conclusions

- Linear Control and Sensors
- Mobile Robotics
- Localisation and Kalman filter
- Prototyping Robots
- Middleware and Compilation
- Simulation and nonlinear control
- Digital conception
- Robust Control
- Vision
- Robotics Architecture

▶ ∢ ∃ ▶

Control issue

Optimisation based control

AUV Control Application

Conclusions

Control for Robots

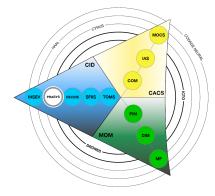
SHARC 2016

Context

- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control Global Optimization General pattern for global optimization Application to H_{∞}

AUV Contro Application

CISCREA: description and challenges


Robust control Results

Conclusions

• UMR CNRS 6285

Lab-STICC

- CID : Connaissance Information Decision
- PRASYS : Perception, Robotics, Autonomous
 SYStems

< □ > < □ > < □ > < □ > < □ > < □ >

Context	Control issue	Optimisation based cont		AUV Control Application	Conclusions
Control for Robots	Some	Robots			
SHARC 2016					
Context					
Control issue Problem Statement Some answers with drawbacks					
Optimisation based control					
Global Optimization General pattern for global optimization	Demor	nstrations with m	ovies		
Application to H_{∞} control					
AUV Control Application					
CISCREA: description and challenges					
Robust control Results					
Conclusions					

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Control issue

Optimisation based control

AUV Control Application

Conclusions

Problem Statement

Control for Robots

SHARC 2016

Context

Control issue

Problem Statement

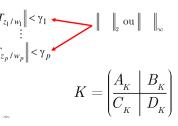
Some answers... wi drawbacks

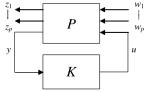
Optimisation based control Global Optimization General pattern for global optimization Application to H_∞ control

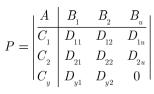
AUV Contro Application

CISCREA: description and challenges

Robust contro Results


Conclusions


Question : find a controller that insures performances to the closed loop


- P et K : systèmes LTI ou LPV MIMO
- u =commandes, y =mesures

What is robust control

- Transferts T_i utilisés pour spécifier différents objectifs de performance ou robustesse :

∃ ► < ∃ ►

Optimisation based control

AUV Control Application

Conclusions

Problem Statement

Control issue

00000

Control for Robots

Norm interpretations

- SHARC 2016
- Context
- Control issue Problem Statement
- Some answers... wit drawbacks
- Optimisation based contro
- Global Optimization General pattern for global optimization
- control
- AUV Contro Application
- CISCREA: description and challenges
- Robust contro Results
- Conclusions

- The H₂-norm:
 - $\bullet\,$ for SISO systems, the induced norm from ${\it I}_2$ to ${\it I}_\infty$
 - the square root of the average power (is *RMS value* or *power-norm*) of the response to a white input signal of unit spectral density or the spectrum/power gain.
 - the square root of the energy contained in the impulse response
- The H_{∞} -norm:
 - the induced norm from I_2 to I_2
 - the power/power gain (RMS)
 - the spectrum/spectrum gain
 - an upper bound on the $I_\infty/{\rm power}$ gain, assuming that the input is a persistent sinusoidal signal

< ロト < 同ト < ヨト < ヨト

• the peak amplitude of the Bode singular value plot

	00000			
Some answers	with drawbacks			
Control for Robots	Control	/ Objectives /	Optimisation Con	straints
SHARC 2016 Context Control issue Problem Statement Some answerswith drawbacks Optimisation based control Global Optimization General pattern for global optimization General pattern for global optimization Cloce Control Application to H _a control CISCREA: description and challenges Robust control Results	Influ l'inc • H_{∞} Sur pour • H_2 Influ Réd • Filt Con régla	(Impulse to peak) nence du vent sur idence la fonction de sensibil r les marges de stabili nence des bruit et uction de consommati rage trôle des modes avec age séparé	$\begin{array}{c} \underbrace{w_{i}}_{model} & \underbrace{w_{i}}_{model} & \underbrace{Rig}_{Lain} \\ \underbrace{w_{i}}_{z_{i}=z_{i}=\beta} & \underbrace{Actuator}_{w_{i}} & \underbrace{Rig}_{Lain} \\ \underbrace{w_{i}}_{w_{i}} & \underbrace{w_{i}}_{sen} \\ \vdots \\ $	$\begin{aligned} \ X\ _{\infty}^{2} &\leq \gamma_{mod} \\ \ X\ _{i2p}^{2} &\leq \gamma_{w-i} \\ \ X\ _{2}^{2} &\leq \gamma_{cons} \\ \ X\ _{2}^{2} &\leq \gamma_{cons} \end{aligned}$
B. Cleme	ent	Control for F	Robots	11 / 57

Control issue

Optimisation based control

AUV Control Application

Conclusions

Some answers... with drawbacks

Control issue

000000

Control for Robots

Control / Objectives / Optimisation Constraints - LN Optimization

Context

Control issue Problem Statement Some answers... with drawbacks

based control Global Optimization General pattern for global optimization Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

min $\alpha_c \gamma_{cons} + \alpha_i \gamma_{w-i}$ $X, Y, \gamma_{cons}, \gamma_{w-i}, T, S$ $J_i, H_i, Q_i, i = \infty, i2p, 2$ under $-J_{\infty} = AX + B\hat{C}$ $A + B\hat{D}C$ $B_{\infty} + B\hat{D}D_{w\infty}$ $-H_{\infty}$ Â $\mathbf{Y}A + \mathbf{\hat{B}}C$ $YB_{\infty} + \hat{B}D_{\mu\infty}$ 0 $\mathbf{X}'C'_{\infty} + \mathbf{\hat{C}}'D'_{\infty u}$ $\mathbf{Q}_{\infty} - \mathbf{X} - \mathbf{X}' \quad -\mathbf{1} - \mathbf{S}' + \mathbf{J}_{\infty}$ 0 < 0 $H_{\infty} - Y - Y'$ $C'_{\infty} + C' \hat{\mathbf{D}}' D'_{\infty n}$ 0 $D'_{\infty} + D'_{y\infty} \hat{\mathbf{D}}' D'_{\infty u}$ -1 $-\gamma_{mod}\mathbf{1}$ $-J_{i2p}$ $A + B\hat{D}C$ $-\mathbf{Q}_{i2p}$ $AX + B\hat{C}$ $\mathbf{Y}A + \mathbf{\hat{B}}C$ Â -H:20 < 0 $\mathbf{Q_{i2p}} - \mathbf{X} - \mathbf{X'} \quad \mathbf{J_{i2p}} - \mathbf{S'} - \mathbf{1}$ $H_{i2p} - Y - Y'$ * $-J_{i2p} = B_{i2p} + B\hat{D}D_{i2py}$ $-\mathbf{H_{i2p}} \quad \mathbf{Y}B_{i2p} + \mathbf{\hat{B}}D_{i2py}$ < 0 * ¹ 1 $-\gamma_{w-i} \quad C_{i2p}\mathbf{X} + D_{i2pu}\hat{\mathbf{C}} \quad C_{i2p} + \tilde{D}_{i2pu}\hat{\mathbf{D}}C$ $Q_{i2p} - X - X' = J_{i2p} - S' - 1$ < 0 $H_{i2p} - Y - Y'$ + $-\gamma_{w-i} D_{i2p} + D_{i2pu} \hat{D} D_{i2py}] < 0$ $Trace(T_2) < \gamma_{cons}$ $-T_2 \quad C_2 \mathbf{X} + D_{2u} \hat{\mathbf{C}} \quad C_2 + D_{2u} \hat{\mathbf{D}} C \quad D_2 + D_{2u} \hat{\mathbf{D}} D_{u2}$ $Q_2 - X - X' = -1 - S' + J_2$ 0 < 0 $H_2 - Y - Y'$ -1 $-J_2 = AX + B\hat{C}$ $A + B\hat{D}C$ $B_2 + B \hat{D} D_{\nu 2}$ $-Q_2$ Â $YA + \hat{B}C$ $\mathbf{Y}B_2 + \mathbf{\hat{B}}D_{y2}$ $-H_2$ $\mathbf{Q}_2 - \mathbf{X} - \mathbf{X}' \quad -\mathbf{1} - \mathbf{S}' + \mathbf{J}_2$ 0 < 0 *

 $H_2 - Y - Y'$

0 -1

- Conservative solution
- Convex optimization
- Full order controller that needs truncature or/and a posteriori stucturation
- Fragility of the solution

< ロト < 同ト < ヨト < ヨト

* * *

Context Control issue

Optimisation based control

AUV Control Application

Conclusions

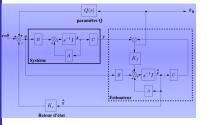
Some answers... with drawbacks

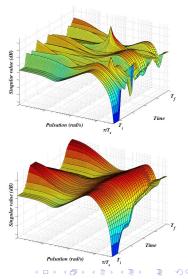
Control for Robots Adding a structural constraint

Robots SHARC 2016

- Context
- Control issue Problem Statement Some answers... with drawbacks
- $\begin{array}{l} \textbf{Optimisation}\\ \textbf{based control}\\ \textbf{Global Optimization}\\ \textbf{General pattern for}\\ \textbf{global optimization}\\ \textbf{Application to } H_{\infty} \end{array}$

AUV Contro Application


CISCREA: description and challenges Robust control


Results

Conclusions

Structure is good for

- gains interpolation for LPV systems
- interpretation for physical behavior
- implementation in embedded system (example of PID next slide)

Context	Control issue ○○○○○●	Optimisation based control	AUV Control Applica	
Some answers	with drawbacks			
Control for Robots	focus o	n implementat	ion	
SHARC 2016 Context Control issue Problem Statement Some answers with drawbacks Optimisation based control Global Optimization General pattern for global optimization	Full order c <i>n</i> =sur all of s Ordina		<pre>ki/s kp + 2 + P(s) + kds ontroller location algorithm - main loog while (running) t r=adin (ch1) y=din (ch2) p=dxp+(c-y) D=ad+0-bd u=aat (v, ulow, uhigh) daout (ch1)</pre>	
		nentation in ded system	<pre>sleep(h) }</pre>	% update integral pdate old process output % wait until next update interval

itext	Control	
	00000	

Optimisation based control

AUV Control Application

Conclusions

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control

Global Optimization General pattern for global optimization Application to H_{∞} control

AUV Contro Application

- CISCREA: description and challenges
- Robust contro Results
- Conclusions

Is there any alternative to tackle the drawbacks?

- make the implementation easy
- keep the constraints formulation for the engineer needs

Yes

- a posteriori structuration with the risk of lack of performance (order reduction, Youla parameter, etc...)
- Choose a structure for the controller (a PID for example)

< □ > < 凸

3 1 4 3 1

• Use Optimization... but nonconvex one

AUV Control Application

Conclusions

Motivation

Robots SHARC 2016

Control for

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control

Global Optimization General pattern for global optimization Application to H_{∞}

AUV Contro Application

CISCREA: description and challenges

Robust control Results

Conclusions

Observations:

- In Automatic, Robotic, Electronic or Mechanic, engineers know very well their problems.
 - \implies Physical Sense
- In Optimization, the specification of each solver need to classify a model: LP, NLP, MINLP, SDP, DFO,...
 - If the model cannot be classify: Modification, Adaptation, Reformulation, \ldots
 - \implies Numerical Sense

Physical Solutions \iff Numerical Solutions

 \implies Goal: Propose optimization tools to build the best solver for their own problems.

Control	is
00000	0

sue

Optimisation based control

AUV Control Application

Conclusions

Global Optimization

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control

Global Optimization

General pattern for global optimization Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Results

Conclusions

Definition: Contractor

Let $\mathbb{K} \subseteq \mathbb{R}^n$ be a "feasible" region.

The operator $\mathcal{C}_{\mathbb{K}} : \mathbb{IR}^n \to \mathbb{IR}^n$ is a contractor for \mathbb{K} if:

$$\forall \mathbf{x} \in \mathbb{IR}^n, \begin{cases} \mathcal{C}_{\mathbb{K}}(\mathbf{x}) \subseteq \mathbf{x}, & \text{(contractance)} \\ \mathcal{C}_{\mathbb{K}}(\mathbf{x}) \cap \mathbb{K} = \mathbf{x} \cap \mathbb{K}. & \text{(completeness)} \end{cases}$$

Example: Forward-Backward Algorithm The operator $C : \mathbb{IR}^n \to \mathbb{IR}^n$ is a contractor for the equation f(x) = 0, if:

$$orall \mathbf{x} \in \mathbb{IR}^n, \left\{ egin{array}{l} \mathcal{C}(\mathbf{x}) \subseteq \mathbf{x}, \ x \in \mathbf{x} ext{ and } f(x) = 0 \Rightarrow x \in \mathcal{C}(\mathbf{x}). \end{array}
ight.$$

< ロト < 同ト < ヨト < ヨト

Control issue

Optimisation based control

AUV Control Application

Conclusions

General pattern for global optimization

General Design

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based contro

Global Optimization General pattern for global optimization

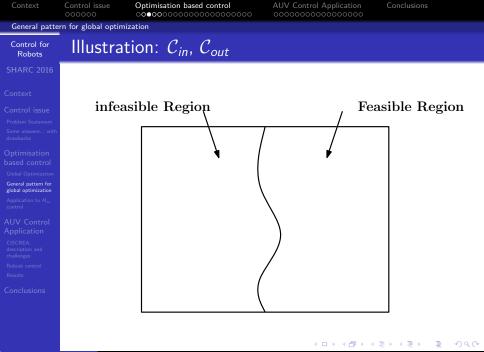
Application to H_{a} control

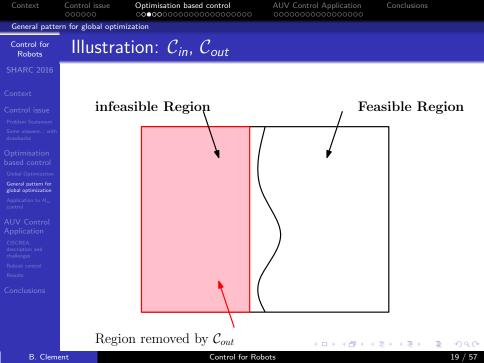
AUV Contro Application

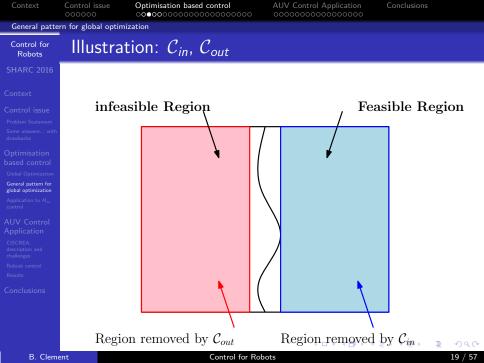
CISCREA: description and challenges

Robust contro Results

Conclusions


$(\tilde{x}, \tilde{f}) =$ **OptimCtc** $([x], C_{out}, C_{in}, f_{cost})$:


- ★ Merging of a Branch&Bound Algorithm based on Interval Analysis (spacialB&B) and a Set Inversion Via Interval Analysis (SIVIA).
 - \star $\mathcal{C}_{out},$ $\mathcal{C}_{in}:$ contractors designed by the user based on $\mathbb K$ and $\overline{\mathbb K},$


< □ > < 凸

.

- * C_f : a FwdBwd contractor based on $\{x : f_{cost}(x) \leq \tilde{f}\}$
- \star \mathcal{B} : Largest first, smear evaluation, homemade,...

Control issue

Optimisation based control

AUV Control Application

Conclusions

General pattern for global optimization

Control for Robots The feasability test

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control

Global Optimization

General pattern for global optimization

Application to H_{c} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

Without equation or system,

How to prove that a point is a feasible point?

< ロト < 同ト < ヨト < ヨト

Control issue Opti

Optimisation based control

AUV Control Application

▶ ∢ ∃ ▶

Conclusions

General pattern for global optimization

Control for Robots

The feasability test

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

Without equation or system, **How to prove that a point is a feasible point?**

Prove that $x \in \mathbb{K} \quad \notin \quad$ Prove that $x \notin \overline{\mathbb{K}}$

Control issue

Optimisation based control

AUV Control Application

Conclusions

General pattern for global optimization

Control for Robots

The feasability test

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H control

AUV Contro Application

CISCREA: description and challenges

Robust control Results

Conclusions

Without equation or system, **How to prove that a point is a feasible point?**

Prove that $x \in \mathbb{K} \quad \not\Leftrightarrow \quad \text{Prove that } x \notin \overline{\mathbb{K}}$

 $\begin{array}{ll} x \text{ is contracted by } \mathcal{C}_{\textit{in}} \Leftrightarrow & \textbf{x} \in \mathbb{K} \\ & \mathbb{K}. \end{array} \Leftrightarrow \mathcal{C}_{\textit{out}} \text{ proves that } x \text{ is in} \\ & \mathbb{K}. \end{array}$

 C_{in} will eliminate all the part of a box which **are not** in $\overline{\mathbb{K}}$. C_{out} will eliminate all the part of a box which **are not** in \mathbb{K} .

< □ > < □ > < □ > < □ > < □ > < □ >

Control issue

Optimisation based control

AUV Control Application

Conclusions

General pattern for global optimization

Control for Robots

Global Optimization based on Contractor

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control

Global Optimization

General pattern for global optimization

Application to H control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

• $\mathcal{L} := \{(x, false)\}$, The boolean indicate if x is entirely feasible

O

- **1** Extract from \mathcal{L} a element (\mathbf{z}, b) ,
- **2** Bisect **z** following a bisector \mathcal{B} : $(\mathbf{z}_1, \mathbf{z}_2)$

(3) for j = 1 to 2 :

- if b = false (i.e. x is not completly feasible) then Contract the infeasible region using C_{out} and C_f, Extract z_{feas} a feasible part of z_j using C_{in}, Insert (z_{feas}, true) in L. Insert the rest (z_j, false) in L.
- else (i.e. x is entirely feasible)
 - Contract \mathbf{z}_j using \mathcal{C}_f ,

Try to find a local optimum without constraint in

▲ □ ▶ ▲ □ ▶ ▲ □

 $[\mathbf{z}_j],$

if succeed then Update \tilde{f} insert (z_j , true) in \mathcal{L} .

Control issue

Optimisation based control

AUV Control Application

Conclusions

General pattern for global optimization

Control for Robots

Global Optimization based on Contractor

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control

Global Optimization

General pattern for global optimization

Application to H control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

• $\mathcal{L} := \{(\mathbf{x}, \textit{false})\}$, The boolean indicate if \mathbf{x} is entirely feasible

• Do

- **1** Extract from \mathcal{L} a element (\mathbf{z}, b) ,
- 2 Bisect z following a bisector \mathcal{B} : (z_1, z_2)

(3) for j = 1 to 2 :

- if b = false (i.e. x is not completly feasible) then Contract the infeasible region using Cout and Cf, Extract z_{feas} a feasible part of z_j using C_{in}, Insert (z_{feas}, true) in L.
 - Insert the rest $(\mathbf{z}_j, false)$ in \mathcal{L} .
- else (i.e. x is entirely feasible)
 - Contract \mathbf{z}_j using \mathcal{C}_f ,

Try to $\boldsymbol{\mathsf{find}}$ a local optimum without constraint in

▲ □ ▶ ▲ □ ▶ ▲ □

 $[\mathbf{z}_j],$

if succeed then Update \tilde{f} insert (z_j , true) in \mathcal{L} .

Control issue

Optimisation based control

AUV Control Application

Conclusions

General pattern for global optimization

Control for Robots

Global Optimization based on Contractor

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control

Global Optimization

General pattern for global optimization

Application to H control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

• $\mathcal{L} := \{(\mathbf{x}, \textit{false})\}$, The boolean indicate if \mathbf{x} is entirely feasible

O

- **1** Extract from \mathcal{L} a element (\mathbf{z}, b) ,
- **2** Bisect **z** following a bisector \mathcal{B} : $(\mathbf{z}_1, \mathbf{z}_2)$

(3) for j = 1 to 2 :

- if b = false (i.e. x is not completly feasible) then Contract the infeasible region using Cout and Cf, Extract z_{feas} a feasible part of z_j using Cin, Insert (z_{feas}, true) in L. Insert the rest (z_j, false) in L.
- else (i.e. x is entirely feasible)
 - Contract \mathbf{z}_i using \mathcal{C}_f ,

Try to find a local optimum without constraint in

[**z**_j],

if succeed then Update \tilde{f} insert (z_j , true) in \mathcal{L} .

Control issue

Optimisation based control

AUV Control Application

Conclusions

General pattern for global optimization

Control for Robots

Global Optimization based on Contractor

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control

Global Optimization

General pattern for global optimization

Application to H control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

\$\mathcal{L}\$:= {(x, false)}, The boolean indicate if x is entirely feasible

• Do

- Extract from \mathcal{L} a element (\mathbf{z}, b) ,
- **2** Bisect **z** following a bisector \mathcal{B} : $(\mathbf{z}_1, \mathbf{z}_2)$

(3) for j = 1 to 2 :

- if b = false (i.e. x is not completly feasible) then Contract the infeasible region using C_{out} and C_f, Extract z_{feas} a feasible part of z_j using C_{in}, Insert (z_{feas}, true) in L. Insert the rest (z_j, false) in L.
- else (i.e. **x** is entirely feasible)
 - Contract \mathbf{z}_i using \mathcal{C}_f ,

Try to find a local optimum without constraint in

[**z**_j],

if succeed then Update \tilde{f} insert (z_j , true) in \mathcal{L} .

ontext Control issue

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

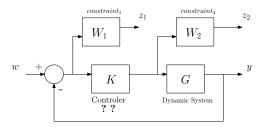
H_{∞} control synthesis under structural constraints

Robots SHARC 2016

Control for

Context

- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control Global Optimization General pattern for global optimization


Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

 H_{∞} control synthesis \Rightarrow Guarantee the robustness and stability $||P||_{\infty} = \sup_{\omega} (\sigma_{\max}(P(j\omega)))$

- Classical approach without structural constraint \rightarrow LMI system, SDP opimization
- Classical approach with structural constraint \rightarrow Nonsmooth local optimization

Context	Control issue		based control	AUV Control Application	Conclusions
Application to	H_∞ control				
Control for Robots	Mathe	matical	Modeling		
SHARC 2016		min		γ	
Context		$\mathbf{k},\!\gamma$	Ш И	$4(i\omega)$	
Control issue Problem Statement Some answers with		$\forall \omega,$	$\left\ \frac{H}{1+G} \right\ $	$\frac{f_1(j\omega)}{(j\omega)K(j\omega)}\Big\ _{\infty} \leq \gamma,$	
drawbacks Optimisation based control Global Optimization General pattern for	<	$\forall \omega,$	$\left\ \frac{W_2(j)}{1+G}\right\ $	$\frac{\omega)K(j\omega)}{(j\omega)K(j\omega)}\Big\ _{\infty} \leq \gamma,$	
global optimization Application to H_{∞} control			The closed-loo	op system must be	stable.
AUV Control Application					
CISCREA: description and	Stability	y:			
description and challenges Robust control Results	The system is stable iff its poles are strictly negative. \Leftrightarrow				
Conclusions	The roo	ots of the	denominator	of $\frac{1}{1+G(s)K(s)}$ are s	trictly negative

 \implies Routh-Hurwitz stability criterion

э

00000

Optimisation based control

Routh-Hurwitz stability criterion

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... witi drawbacks

Optimisation based control Global Optimization General pattern for global optimization Application to H₂₀

control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

$P(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$

$v_{1,1} = a_n$ $v_{2,1} = a_{n-1}$	$v_{1,2} = a_{n-2}$ $v_{2,2} = a_{n-3}$	$v_{1,3} = a_{n-4}$ $v_{2,3} = a_{n-5}$	$v_{1,4} = a_{n-6}$ $v_{2,4} = a_{n-7}$
$v_{3,1} = \frac{-1}{\frac{v_{2,1}}{v_{2,1}}} \begin{vmatrix} v_{1,1} & v_{1,2} \\ v_{2,1} & v_{2,2} \end{vmatrix}$	$v_{3,2} = \frac{-1}{v_{2,1}} \begin{vmatrix} v_{1,1} & v_{1,3} \\ v_{2,1} & v_{2,3} \end{vmatrix}$	$v_{3,3} = \frac{-1}{v_{2,1}} \begin{vmatrix} v_{1,1} & v_{1,4} \\ v_{2,1} & v_{2,4} \end{vmatrix}$	· · · ·
$v_{4,1} = \frac{-1}{v_{3,1}} \begin{vmatrix} v_{2,1} & v_{2,2} \\ v_{3,1} & v_{3,2} \end{vmatrix}$	$v_{4,2} = \frac{-1}{v_{3,1}} \begin{vmatrix} v_{2,1} & v_{2,3} \\ v_{3,1} & v_{3,3} \end{vmatrix}$		
$v_{5,1} = \frac{-1}{v_{4,1}} \begin{vmatrix} v_{3,1} & v_{3,2} \\ v_{4,1} & v_{4,2} \end{vmatrix}$			
:	·	·	·

< □ > < 同 > < 回 > < 回 > < 回 >

Control issue

Optimisation based control

Routh-Hurwitz stability criterion

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H_∞ control

AUV Contro Application

CISCREA: description and challenges

Robust control Results

Conclusions

$P(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$

$v_{1,1} = a_n$ $v_{2,1} = a_{n-1}$	$v_{1,2} = a_{n-2}$ $v_{2,2} = a_{n-3}$	$v_{1,3} = a_{n-4}$ $v_{2,3} = a_{n-5}$	$v_{1,4} = a_{n-6}$ $v_{2,4} = a_{n-7}$
$v_{3,1} = \frac{-1}{v_{2,1}} \begin{vmatrix} v_{1,1} & v_{1,2} \\ v_{2,1} & v_{2,2} \end{vmatrix}$	$v_{3,2} = \frac{-1}{v_{2,1}} \begin{vmatrix} v_{1,1} & v_{1,3} \\ v_{2,1} & v_{2,3} \end{vmatrix}$	$v_{3,3} = \frac{-1}{v_{2,1}} \begin{vmatrix} v_{1,1} & v_{1,4} \\ v_{2,1} & v_{2,4} \end{vmatrix}$	
$v_{4,1} = \frac{-1}{v_{3,1}} \begin{vmatrix} v_{2,1} & v_{2,2} \\ v_{3,1} & v_{3,2} \end{vmatrix}$	$v_{4,2} = \frac{-1}{v_{3,1}} \begin{vmatrix} v_{2,1} & v_{2,3} \\ v_{3,1} & v_{3,3} \end{vmatrix}$		
$v_{5,1} = \frac{-1}{v_{4,1}} \begin{vmatrix} v_{3,1} & v_{3,2} \\ v_{4,1} & v_{4,2} \end{vmatrix}$			
	·	·	

If all the value of the **first column** are positive, all roots of *P* are negative.

< ロト < 同ト < ヨト < ヨト

Control issue

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Definition of the feasible set

Robots SHARC 2016

Control for

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

 $\mathbb{K}^{1}_{\omega} = \left\{ (k, \gamma, \omega) : \left\| \frac{W_{1}(i\omega)}{1 + G(i\omega)K(i\omega)} \right\|_{\infty} \leq \gamma \right\},\$

$$\begin{split} \mathbb{K}^{2}_{\omega} &= \left\{ (k, \gamma, \omega) : \left\| \frac{W_{2}(i\omega)K(i\omega)}{1 + G(i\omega)K(i\omega)} \right\|_{\infty} \leq \gamma \right\}, \\ \mathbb{K}^{4} &= \bigcap_{\omega \in [10^{-2}, 10^{2}]} \mathbb{K}^{1}_{\omega} \cap \mathbb{K}^{2}_{\omega}. \end{split}$$

The Routh's condition / stability of the closed-loop system:

$$\mathbb{K}^{Routh} = \{(k,\gamma) : \begin{cases} a_n(k,\gamma) > 0, \\ a_{n-1}(k,\gamma) > 0, \\ v_{2,1}(k,\gamma) > 0, \\ \dots \end{cases} \}.$$

The feasible set of our problem is $\mathbb{K} = \mathbb{K}^4 \cap \mathbb{K}^{Routh}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Control issue

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

Contractor Modeling: Properties

Let A a contractor for the equation f(x) = 0, and B a contractor for the equation g(x) = 0, then:

Intersection, Composition

 $\mathcal{A}\cap\mathcal{B}$ and $\mathcal{A}\circ\mathcal{B}$ are two contractors for the region:

$$\{x \in \mathbb{R}^n : f(x) = 0 \text{ AND } g(x) = 0\}$$

Union

 $\mathcal{A} \cup \mathcal{B}$ is a contractor for the region:

 $\{x \in \mathbb{R}^n : f(x) = 0 \text{ } OR g(x) = 0\}$

< □ > < 同 > < 回 > < 回 > < 回 >

Control issue

Optimisation based control AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

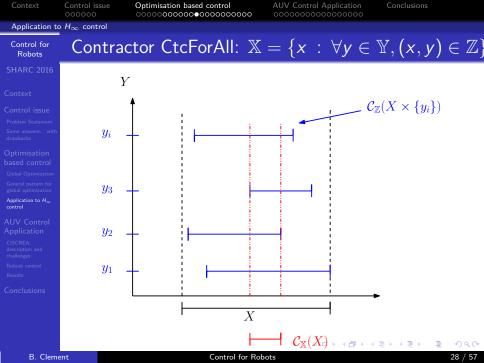
Contractor with Quantifiers

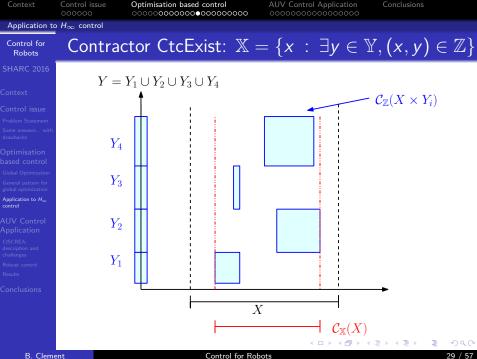
Application to Han

Let \mathcal{C} be a contractor for a set $\mathbb{Z} = \mathbb{X} \times \mathbb{Y}$, $\pi_{\mathbb{X}}$ the projection of \mathbb{Z} over \mathbb{X} .

Contractor ForAll / Exists

l


$$\left\{ egin{array}{l} \mathcal{C}^{\cap \mathbb{Y}}(\mathbf{x}) = igcap_{y \in \mathbb{Y}} \pi_{\mathbb{X}} \left(\mathcal{C}(\mathbf{x} imes \{y\})
ight), \ \mathcal{C}^{\cup \mathbb{Y}}(\mathbf{x}) = igcup_{y \in \mathbb{Y}} \pi_{\mathbb{X}} \left(\mathcal{C}(\mathbf{x} imes \{y\})
ight). \end{array}
ight.$$


Property

$$\mathcal{C}^{\cap \mathbb{Y}}$$
 is a contractor for $\{x : \forall y \in \mathbb{Y}, (x, y) \in \mathbb{Z}\}\$
 $\mathcal{C}^{\cup \mathbb{Y}}$ is a contractor for $\{x : \exists y \in \mathbb{Y}, (x, y) \in \mathbb{Z}\}.$

э

< □ > < □ > < □ > < □ > < □ > < □ >

Control issue

Optimisation based control

AUV Control Application

< □ > < 凸

.

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contr Results

Conclusions

Construction of Contractors C_{out} of the feasible set \mathbb{R}

 \mathcal{C}_{out} will eliminate all the part of a box which are not in \mathbb{K} .

$$\begin{split} \mathbb{K}^{1}_{\omega} &= \left\{ (k, \gamma, \omega) \ : \ \left\| \frac{W_{1}(i\omega)}{1 + G(i\omega)K(i\omega)} \right\|_{\infty} \leq \gamma \right\}, \\ \mathbb{K}^{2}_{\omega} &= \left\{ (k, \gamma, \omega) \ : \ \left\| \frac{W_{2}(i\omega)K(i\omega)}{1 + G(i\omega)K(i\omega)} \right\|_{\infty} \leq \gamma \right\}, \\ \mathbb{K} &= \left(\bigcap_{\omega \in [10^{-2}, 10^{2}]} \mathbb{K}^{1}_{\omega} \cap \mathbb{K}^{2}_{\omega} \right) \cap \mathbb{K}^{Routh}. \end{split}$$

Control issue

Optimisation based control

AUV Control Application

< □ > < 凸

.

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

Construction of Contractors C_{out} of the feasible set \mathbb{R}

 $\mathcal{C}_{\textit{out}}$ will eliminate all the part of a box which are not in $\mathbb{K}.$

$$\mathbb{K} = \left(igcap_{\omega \in [10^{-2}, 10^2]} \mathbb{K}^1_\omega \cap \mathbb{K}^2_\omega
ight) \cap \mathbb{K}^{\textit{Routh}}.$$

Control issue

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

Construction of Contractors C_{out} of the feasible set \mathbbm{R}

 \mathcal{C}_{out} will eliminate all the part of a box which are not in \mathbb{K} .

$$\mathbb{K} = \left(\bigcap_{\omega \in [10^{-2}, 10^2]} \mathbb{K}^1_{\omega} \cap \mathbb{K}^2_{\omega}\right) \cap \mathbb{K}^{\textit{Routh}}.$$

• Create the contractor C_1 , C_2 and C_{Routh} based on \mathbb{K}^1_{ω} , \mathbb{K}^2_{ω} and \mathbb{K}^{Routh} :

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, ...

Control issue

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

Construction of Contractors \mathcal{C}_{out} of the feasible set \mathbbm{R}

 $\mathcal{C}_{\textit{out}}$ will eliminate all the part of a box which are not in $\mathbb{K}.$

$$\mathbb{K} = \left(\bigcap_{\omega \in [10^{-2}, 10^2]} \mathbb{K}^1_{\omega} \cap \mathbb{K}^2_{\omega}\right) \cap \mathbb{K}^{\textit{Routh}}.$$

• Create the contractor C_1 , C_2 and C_{Routh} based on \mathbb{K}^1_{ω} , \mathbb{K}^2_{ω} and \mathbb{K}^{Routh} :

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, ...

Control issue

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

Construction of Contractors \mathcal{C}_{out} of the feasible set \mathbbm{R}

 $\mathcal{C}_{\textit{out}}$ will eliminate all the part of a box which are not in $\mathbb{K}.$

$$\mathbb{K} = \left(\bigcap_{\omega \in [10^{-2}, 10^2]} \mathbb{K}^1_{\omega} \cap \mathbb{K}^2_{\omega}\right) \cap \mathbb{K}^{\textit{Routh}}.$$

• Create the contractor C_1 , C_2 and C_{Routh} based on \mathbb{K}^1_{ω} , \mathbb{K}^2_{ω} and \mathbb{K}^{Routh} :

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, ...

- $linter: C_3(\mathbf{k}, \gamma, \omega) = C_1(\mathbf{k}, \gamma, \omega) \cap C_2(\mathbf{k}, \gamma, \omega).$
- StcForAll: $\mathcal{C}^{\cap\omega}(\mathbf{k},\gamma) = \bigcap \mathcal{C}_{3}(\mathbf{k},\gamma,\omega).$

 $\omega{\in}[10^{-2}{,}10^{2}]$

.

Control issue

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

\mathcal{C}_{out} will eliminate all the part of a box which are not in \mathbb{K} .

$$\mathbb{K} = \left(\bigcap_{\omega \in [10^{-2}, 10^2]} \mathbb{K}^1_{\omega} \cap \mathbb{K}^2_{\omega}\right) \cap \mathbb{K}^{Routh}.$$

Construction of Contractors C_{out} of the feasible set \mathbb{R}

• Create the contractor C_1 , C_2 and C_{Routh} based on \mathbb{K}^1_{ω} , \mathbb{K}^2_{ω} and \mathbb{K}^{Routh} :

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, \ldots

- Solution Inter: $\mathcal{C}_3(\mathbf{k},\gamma,\omega) = \mathcal{C}_1(\mathbf{k},\gamma,\omega) \cap \mathcal{C}_2(\mathbf{k},\gamma,\omega).$
- 3 CtcForAll: $\mathcal{C}^{\cap\omega}(\mathbf{k},\gamma) = \bigcap_{\omega \in [10^{-2},10^2]} \mathcal{C}_3(\mathbf{k},\gamma,\omega).$

• Inter: $C_{out} = C^{\cap \omega} \cap C_{Routh}$.

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

< ロト < 同ト < ヨト < ヨト

Control issue

Optimisation based control

AUV Control Application

< □ > < 凸

.

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H_∞ control

AUV Contro Application

CISCREA: description and challenges

Robust contr Results

Conclusions

Construction of Contractors C_{in} of the unfeasible set

 C_{in} will eliminate all the part of a box which are not in $\overline{\mathbb{K}}$.

$$\overline{\mathbb{K}_{\omega}^{1}} = \left\{ (k, \gamma, \omega) : \left\| \frac{W_{1}(i\omega)}{1 + G(i\omega)K(i\omega)} \right\| > \gamma \right\},$$

$$\overline{\mathbb{K}_{\omega}^{2}} = \left\{ (k, \gamma, \omega) : \left\| \frac{W_{2}(i\omega)K(i\omega)}{1 + G(i\omega)K(i\omega)} \right\| > \gamma \right\},$$

$$\overline{\mathbb{K}} = \left(\bigcup_{\omega \in [10^{-2}, 10^{2}]} \overline{\mathbb{K}_{\omega}^{1}} \cup \overline{\mathbb{K}_{\omega}^{2}} \right) \cup \overline{\mathbb{K}^{Routh}}.$$

Control issue

Optimisation based control

AUV Control Application

< □ > < 凸

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

Construction of Contractors C_{in} of the unfeasible set

 \mathcal{C}_{in} will eliminate all the part of a box which are not in $\overline{\mathbb{K}}$.

$$\overline{\mathbb{K}} = \left(\bigcup_{\omega \in [10^{-2}, 10^2]} \overline{\mathbb{K}^1_\omega} \cup \overline{\mathbb{K}^2_\omega}\right) \cup \overline{\mathbb{K}^{Routh}}.$$

Control issue

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

Construction of Contractors C_{in} of the unfeasible set

 \mathcal{C}_{in} will eliminate all the part of a box which are not in $\overline{\mathbb{K}}$.

$$\overline{\mathbb{K}} = \left(\bigcup_{\omega \in [10^{-2}, 10^2]} \overline{\mathbb{K}^1_{\omega}} \cup \overline{\mathbb{K}^2_{\omega}}\right) \cup \overline{\mathbb{K}^{Routh}}.$$

• Create the contractor $C_{\overline{1}}$, $C_{\overline{2}}$ and $C_{\overline{Routh}}$ based on $\overline{\mathbb{K}_{\omega}^{1}}$, $\overline{\mathbb{K}_{\omega}^{2}}$ and $\overline{\mathbb{K}^{Routh}}$:

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, ...

Control issue

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control Global Optimization General pattern for global optimization

Application to H_∞ control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

Construction of Contractors C_{in} of the unfeasible set

 \mathcal{C}_{in} will eliminate all the part of a box which are not in $\overline{\mathbb{K}}$.

$$\overline{\mathbb{K}} = \left(\bigcup_{\omega \in [10^{-2}, 10^2]} \overline{\mathbb{K}^1_{\omega}} \cup \overline{\mathbb{K}^2_{\omega}}\right) \cup \overline{\mathbb{K}^{Routh}}.$$

• Create the contractor $C_{\overline{1}}$, $C_{\overline{2}}$ and $C_{\overline{Routh}}$ based on $\overline{\mathbb{K}_{\omega}^{1}}$, $\overline{\mathbb{K}_{\omega}^{2}}$ and $\overline{\mathbb{K}^{Routh}}$:

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, ...

< □ > < 凸

.

Control issue

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contr Application

CISCREA: description and challenges

Robust contro Results

Conclusions

Construction of Contractors \mathcal{C}_{in} of the unfeasible set

 $\mathcal{C}_{\textit{in}}$ will eliminate all the part of a box which are not in $\overline{\mathbb{K}}.$

$$\overline{\mathbb{K}} = \left(\bigcup_{\omega \in [10^{-2}, 10^2]} \overline{\mathbb{K}^1_\omega} \cup \overline{\mathbb{K}^2_\omega}\right) \cup \overline{\mathbb{K}^{\textit{Routh}}}.$$

• Create the contractor $C_{\overline{1}}$, $C_{\overline{2}}$ and $C_{\overline{Routh}}$ based on $\overline{\mathbb{K}_{\omega}^{1}}$, $\overline{\mathbb{K}_{\omega}^{2}}$ and $\overline{\mathbb{K}^{Routh}}$:

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, ...

- CtcExist: $\mathcal{C}^{\cup\omega}(\mathbf{k},\gamma) = \bigcup_{\omega \in [10^{-2},10^2]} \mathcal{C}_{\overline{3}}(\mathbf{k},\gamma,\omega).$

< ロト < 同ト < ヨト < ヨト

Control issue

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

Construction of Contractors C_{in} of the unfeasible set

 \mathcal{C}_{in} will eliminate all the part of a box which are not in $\overline{\mathbb{K}}$.

$$\overline{\mathbb{K}} = \left(\bigcup_{\omega \in [10^{-2}, 10^2]} \overline{\mathbb{K}^1_{\omega}} \cup \overline{\mathbb{K}^2_{\omega}}\right) \cup \overline{\mathbb{K}^{Routh}}.$$

• Create the contractor $C_{\overline{1}}$, $C_{\overline{2}}$ and $C_{\overline{Routh}}$ based on $\overline{\mathbb{K}_{\omega}^{1}}$, $\overline{\mathbb{K}_{\omega}^{2}}$ and $\overline{\mathbb{K}^{Routh}}$:

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, ...

- CtcExist: $\mathcal{C}^{\cup\omega}(\mathbf{k},\gamma) = \bigcup_{\omega \in [10^{-2}, 10^2]} \mathcal{C}_{\overline{3}}(\mathbf{k},\gamma,\omega).$
- Union: $C_{in} = C^{\cup \omega} \cup C_{\overline{Routh}}$.

< ロト < 同ト < ヨト < ヨト

ntext Control issue O

Optimisation based control

AUV Control Application

Conclusions

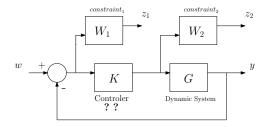
Application to H_{∞} control

^{Control for}_{Robots} First Application with second order dynamic system

Robots SHARC 2016

Context

- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control Global Optimization General pattern for global optimization


Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

The transfer function of the dynamic system:

$$egin{aligned} G(s) &= rac{1}{s^2+1.4s+1}, & \mathcal{K}(s) &= k_p + rac{k_i}{s} + rac{k_d s}{1+s}. \ & \mathcal{W}_1(s) &= rac{s+100}{100s+1}, & \mathcal{W}_2(s) &= rac{10s+1}{s+10}. \end{aligned}$$

< □ > < 凸

- ∢ ∃ →

000000

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

Overview of the equation

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

$$\forall \omega \in [10^{-2}, 10^2], \left\| \frac{W_1(j\omega)}{1 + G(j\omega)K(j\omega)} \right\|_{\infty} \leq \gamma.$$
$$\iff$$

$$\forall \omega \in [10^{-2}, 10^2], \frac{w^2 (w^2 + 1.0) (w^2 + 10000.0) (25.0 w^4 - 1.0 w^2 + 25.0)}{(10000.0 w^2 + 1.0) f_1(\mathbf{k}, \gamma, \omega)} \leq \gamma$$

æ

< □ > < 同 > < 回 > < 回 > < 回 >

Control issue

Optimisation based control

Overview of the equation

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges Robust control

Results

Conclusions

$\forall \omega \in [10^{-2}, 10^2], \left\| \frac{W_1(j\omega)}{1 + G(j\omega)K(j\omega)} \right\|_{\infty} \leq \gamma.$

$$\forall \omega \in [10^{-2}, 10^2], \frac{w^2 (w^2 + 1.0) (w^2 + 10000.0) (25.0 w^4 - 1.0 w^2 + 25.0)}{(10000.0 w^2 + 1.0) f_1 (\mathbf{k}, \gamma, \omega)} \leq \gamma$$

$$\begin{split} f_1(\mathbf{k},\gamma,\omega) &= 25.0 \mathrm{kd}^2 w^4 + 25.0 \mathrm{kp}^2 w^2 + 25.0 \mathrm{kp}^2 w^4 - \\ 1.0 \mathrm{ki} &(50.0 \mathrm{kd} w^2 + 70.0 w^2 + 70.0 w^4) + \mathrm{ki}^2 &(25.0 w^2 + 25.0) + \\ 120.0 \mathrm{kd} w^4 - 50.0 \mathrm{kd} w^6 + 50.0 \mathrm{kp} w^2 - 50.0 \mathrm{kp} w^6 + 25.0 w^2 + \\ &24.0 w^4 + 24.0 w^6 + 25.0 w^8 + 50.0 \mathrm{kd} \mathrm{kp} w^4 \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Control issue

Optimisation based control

Overview of the equation

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges Robust control

Results

Conclusions

$\forall \omega \in [10^{-2}, 10^2], \left\| \frac{W_1(j\omega)}{1 + G(j\omega)K(j\omega)} \right\|_{\infty} \leq \gamma.$

$$\forall \omega \in [10^{-2}, 10^2], \frac{w^2 (w^2 + 1.0) (w^2 + 1000.0) (25.0 w^4 - 1.0 w^2 + 25.0)}{(10000.0 w^2 + 1.0) f_1(\mathbf{k}, \gamma, \omega)} \leq \gamma$$

$$\begin{split} f_1(\mathbf{k},\gamma,\omega) &= 25.0 \mathrm{kd}^2 w^4 + 25.0 \mathrm{kp}^2 w^2 + 25.0 \mathrm{kp}^2 w^4 - \\ 1.0 \mathrm{ki} &(50.0 \mathrm{kd} w^2 + 70.0 w^2 + 70.0 w^4) + \mathrm{ki}^2 &(25.0 w^2 + 25.0) + \\ 120.0 \mathrm{kd} w^4 - 50.0 \mathrm{kd} w^6 + 50.0 \mathrm{kp} w^2 - 50.0 \mathrm{kp} w^6 + 25.0 w^2 + \\ &24.0 w^4 + 24.0 w^6 + 25.0 w^8 + 50.0 \mathrm{kd} \mathrm{kp} w^4 \\ &\forall u \in [-2,2], \omega = 10^u. \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Comparing Results

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H_∞ control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

The same problem is proposed with 2 existant tools and compared with the new approach.

- HINFSYN of Matlab full order controller with convex optimization based on LMI ($\gamma = 1.5887$);
- INFSTRUCT of Matlab structured controller with local optimization ($\gamma = 2.1414$).
- **③** Global Optimization of IBEX ($\gamma = 2.1414$)

< ロト < 同ト < ヨト < ヨト

ntext Control is 000000 Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Results with HINFSYN of Matlab

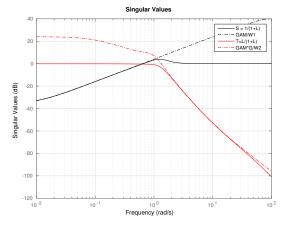
Robots SHARC 2016

Control for

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization


Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contr Results

Conclusions

 $\gamma = 1.5887$

< □ > < □ > < □ > < □ > < □ > < □ >

ntext Control iss 000000 Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

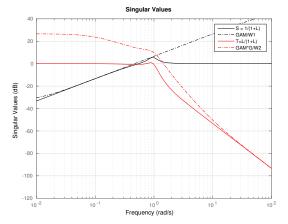
Control for Robots Results with HINFSTRUCT of Matlab

Robots SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization


Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

 $\gamma = 2.1414$

< □ > < □ > < □ > < □ > < □ > < □ >

Context Control issue

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Results with Global Optimization of IBEX

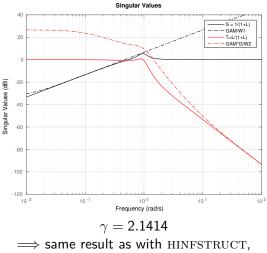
Robots SHARC 2016

Control for

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization


Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

but with a global optimality proof!

Context Control issue

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Results with Global Optimization of IBEX

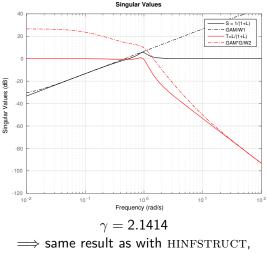
Robots SHARC 2016

Control for

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization


Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

but with a global optimality proof!

Optimisation based control

AUV Control Application

Conclusions

Application to H_{∞} control

Control issue

To keep in mind

Robots SHARC 2016

Control for

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization

Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

Contractor Programming:

- Generates the Modeling and the adapted Solver in the same time,
- Consider heterogeneous constraints without changing the solver,
- Give all the tools to the expert of the application.

Optimisation based control

AUV Control Application

Conclusions

CISCREA: description and challenges

Control for Robots

AUV CISCREA

Context

Control issue Problem Statement Some answers... witi drawbacks

Global Optimization Global Optimization General pattern for

Application to H_{\odot} control

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

Size	0.525m (L) 0.406m (W) 0.395m (H)		
Weight in air	15.56kg (without payload and floats)		
Degrees of Freedom	Surge, Sway, Heave and Yaw		
Propulsion	2 vertical and 4 horizontal propellers		
Speed	2 knots (Surge) and 1 knot (Sway, Heave)		
Depth Rating	50m		
On-board Battery	2-4 hours		

æ

< □ > < 同 > < 回 > < 回 > < 回 >

Optimisation based control

AUV Control Application

Conclusions

CISCREA: description and challenges

Control issue

Control for Robots

AUV CISCREA model

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization Application to H_∞

AUV Contro Application

CISCREA: description and challenges

Robust contro Results

Conclusions

B. Clement

Rigid-body dynamic:

$$M_{RB}\dot{\nu} + C_{RB}(\nu)\nu = \tau_{env} + \tau_{hydro} + \tau_{pro}$$
(1)

Hydrodynamic formulations:

$$\tau_{hydro} = -M_A \dot{\nu} - C_A(\nu)\nu - D(|\nu|)\nu - g(\eta)$$
⁽²⁾

Damping:

$$D(|\nu|) = D_L + D_N |\nu|\nu \tag{3}$$

Parameter	Description
M _{RB}	AUV rigid-body mass and inertia matrix
M _A	Added mass matrix
C _{RB}	Rigid-body induced coriolis-centripetal matrix
CA	Added mass induced coriolis-centripetal matrix
$D(\nu)$	Damping matrix
$g(\eta)$	Restoring forces and moments vector
τ_{env}	Environmental disturbances(wind,waves and currents)
τ_{hydro}	Vector of hydrodynamic forces and moments
τ_{pro}	Propeller forces and moments vector

Context Control issue

Optimisation based control

AUV Control Application

Conclusions

CISCREA: description and challenges

Control for Robots

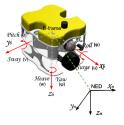
AUV CISCREA Yaw model

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization


Application to H control

AUV Contro Application

CISCREA: description and challenges

Robust contr Results

Conclusions

We consider that there are no dependencies between the yaw dynamic and dynamics along other axis. Resulting Yaw dynamic:

$$(I_{YRB} + I_{YA})\ddot{x} + D_{YN}|\dot{x}|\dot{x} + D_{YL}\dot{x} = K_t\tau_i$$
(4)

However, H_{∞} synthesis requires a linear system. Thus, the CISCREA yaw model could be linearized as:

$$(I_{YRB} + I_{YA})\ddot{x} + (D_{YLA} + \delta)\dot{x} = K_t \tau_{i_1} + \delta = 5$$

Optimisation based control

AUV Control Application

Conclusions

Robust control

Control issue

Control for Robots

SHARC 2016

Context

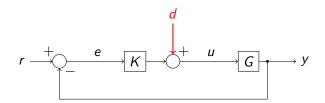
Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization Application to H_∞ control

AUV Contro Application

CISCREA: description and challenges

Robust control Results


Conclusions

Control objectives specifications

We aim to synthesize a controller to meet the following objectives:

- Small tracking error e.
- ② External perturbation rejection.

External perturbation can be modeled as a control disturbance signal d.

Context

Control issue Problem Statement Some answers... wit drawbacks

Optimisation based control Global Optimization General pattern for global optimization

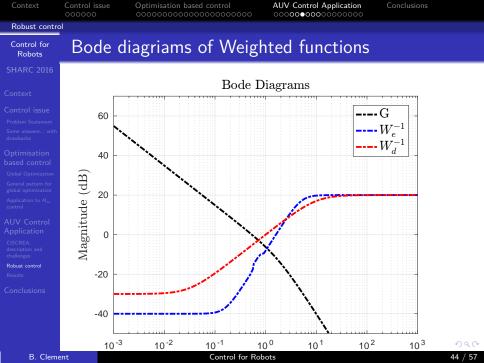
Application to H, control

AUV Contro Application

CISCREA: description and challenges

Robust control Results

Conclusions


The two objectives can be formulate as H_{∞} constraints: Small tracking error:

$$\frac{|e(i\omega)|}{|r(i\omega)|} \le |W_e^{-1}(i\omega)| \iff ||T_{r \to e}(i\omega)W_e(i\omega)||_{\infty} \le 1$$

external perturbation rejection:

$$\frac{|y(i\omega)|}{|d(i\omega)|} \leq |W_y^{-1}(i\omega)| \iff ||T_{d \to y}(i\omega)W_y(i\omega)||_{\infty} \leq 1$$

< □ > < 凸

Context Control issue

Optimisation based control

Min Max Problem

AUV Control Application

Conclusions

Robust control

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization Application to H_{∞} control

AUV Contro Application

CISCREA: description and challenges

Robust control Results

Conclusions

• The controller K(k, s) depends on free parameters k.

- $T_{r \to e}(k, s) = \frac{1}{1 + G(s)K(k, s)}$ depends on k
- $T_{d \to y}(k,s) = \frac{G(s)}{1+G(s)K(k,s)}$ depends on k
- The constraint satisfaction problem is:

Find k, $\max(||T_{r \rightarrow e}(k,s)W_e(s)||_{\infty}, ||T_{d \rightarrow y}(k,s)W_y(s)||_{\infty}) \leq 1$

•
$$||T(s)||_{\infty} = \sup_{\omega} |T(i\omega)|$$

The Min Max problem is:

$$\min_{k} \sup_{\omega \geq 0} \{ \max(|T_{r \to e}(k,s)W_y(s)|, |T_{d \to y}(k,s)W_y(s)|) \}$$

- E > - E >

Context Control issue

Optimisation based control

Solving the Min Max problem

AUV Control Application

Conclusions

Robust control

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization Application to H_∞ control

AUV Contro Application

CISCREA: description and challenges

Robust control Results

Conclusions

We solve the Min Max problem with Global optimization based on interval analysis.

- Existing methods are based on local optimization. They only provide an upper bound of the objective function.
- Global optimization provides an enclosure of the objective function. It is possible to prove that the CSP (*Constraint Satisfaction Problem*) is not feasible.

Control issue Opti 000000 000

Uncertainties

Optimisation based control

AUV Control Application

Conclusions

Robust control

Control for Robots

SHARC 2016

- Context
- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control Global Optimization General pattern for global optimization Application to H_{∞}
- AUV Contro Application
- CISCREA: description and challenges
- Robust control Results
- Conclusions

The model of the CISCREA carries uncertainties. The controller is synthesize from a nominal model, and robustness to uncertainties must be analyzed.

- An uncertainty is represented by an interval: **p** is the vector of uncertainties.
- $G_{\Delta}(s, p), \ p \in \mathbf{p}$ describe the uncertain system.
- The closed loop system stability and performances are robust if and only if: $\forall p \in \mathbf{p}$,

 $\max(||T_{\Delta r \to e}(p,s)W_e(s)||_{\infty}, ||T_{\Delta d \to y}(p,s)W_y(s)||_{\infty}) \leq 1$

< ロト < 同ト < ヨト < ヨト

• The robustness condition can be validated with interval analysis in a reliable way.

ext Control issue

Optimisation based control

AUV Control Application

Conclusions

Results

Control for Robots

Controller synthesis

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization Application to H_∞ control

AUV Contro Application

CISCREA: description and challenges

Robust contro

Results

Conclusions

• PID controller:

$$\mathcal{K}(k,s) = k_{
ho} + rac{k_i}{s} + rac{k_d s}{1+ au s}$$

•
$$k = (k_p, k_i, k_d, \tau)$$

• CISCREA model:

$$G(s)=\frac{6.725}{s^2+2s}$$

$$W_e = rac{0.1s^2 + 0.7109s + 2.527}{s^2 + 0.2248s + 0.02527}, \ W_y = rac{0.1s + 0.9935}{s + 0.03142}$$

< ロト < 同ト < ヨト < ヨト

• k is searched in $[0,2]^4$

ntext	Control	issue	

Optimisation based control

Controller synthesis

AUV Control Application

Conclusions

Results

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization

global optimizatio Application to H_{\odot}

AUV Contro Application

CISCREA: description and challenges

Robust contro

Results

Conclusions

• Solution to the Min Max problem computed: $k^* = (1.987, 1.731, 0.638, 0.001)$

•
$$||T_{r\to e}(k^*, s)||_{\infty} = 0.325$$

•
$$||T_{d \to y}(k^*, s)||_{\infty} = 0.154$$

• $\min_{\substack{k \ \omega \ge 0}} \sup \{ \max(|T_{r \to e}(k, s)W_y(s)|, |T_{d \to y}(k, s)W_y(s)|) \} \in [0.225, 0.325]$

< ロト < 同ト < ヨト < ヨト

ext Control issu 000000 Optimisation based control

AUV Control Application

Conclusions

Results

Control for Robots

SHARC 2016

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimization General pattern for global optimization Application to H

AUV Contro Application

CISCREA: description and challenges

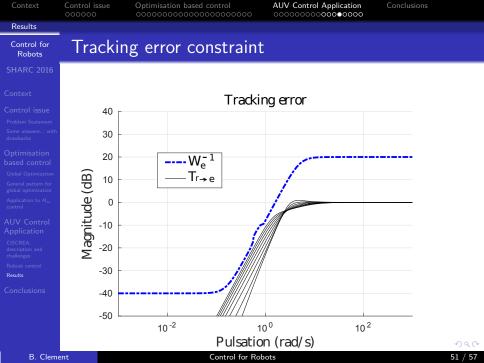
Robust contro

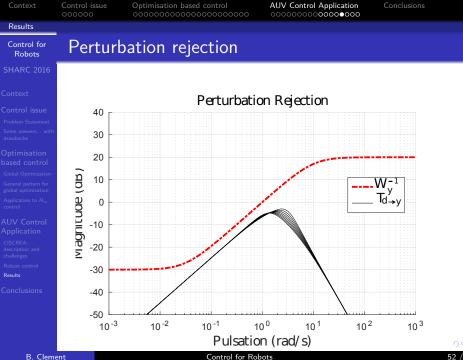
Results

Conclusions

Robustness Analysis

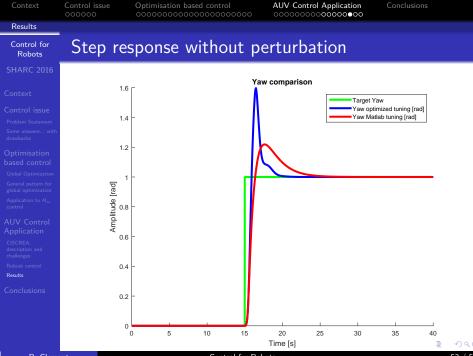
Uncertain CISCREA model:


$$G_{\Delta}(s,p) = rac{6.725}{s^2 + ps}, \ p \in [0,4]$$

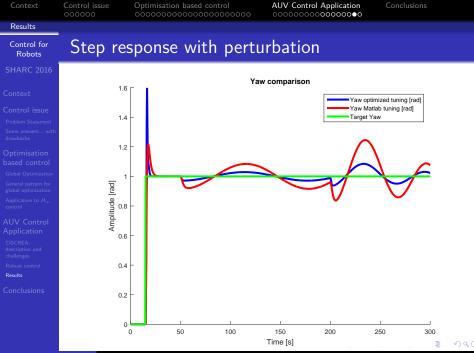

•
$$||T_{\Delta r \to e}(k^*, s, p)||_{\infty} \le 0.82$$

• $||T_{\Delta d \to v}(k^*, s, p)||_{\infty} \le 0.162$

•
$$||T_{r \to e}(k^*, s)||_{\infty} = 0.325$$


•
$$||T_{d \to y}(k^*, s)||_{\infty} = 0.154$$

< □ > < 同 > < 回 > < 回 > < 回 >


52 / 57

B. Clement

Control for Robots

53 / 57

B. Clement

Control for Robots

54 / 57

Context	Control issue	Optimisation based control	AUV Control Application	Conclusions			
Results							
Control for Robots	Conclu	sion for the robot	control				
SHARC 2016							
Context							
Control issue							
Problem Statement Some answers with							
drawbacks	D.	here and the states in the states		1.1.1			
Optimisation based control		 Robust control synthesis method based on global 					
Global Optimization	ор	timization: the optimal	PID				
General pattern for global optimization							
Application to H_{∞} control	_						
AUV Control	• Ro	bustness analysis with	respect to uncertai	nties with			
Application	ex	periments on a real und	lerwater robot				
description and challenges							
Robust control							
Results							
Conclusions							
			A B > A	ヨト 4 ヨト ヨー めんぐ			
B. Cleme	ent	Control for Rol	oots	55 / 57			

Control issue

Optimisation based control

AUV Control Application

Conclusions

Conclusions

Robots SHARC 2016

Control for

- Context
- Control issue Problem Statement Some answers... with drawbacks
- Optimisation based control Global Optimization General pattern for global optimization
- Application to H_{∞} control
- AUV Contro Application
- CISCREA: description and challenges
- Robust control Results
- Conclusions

- Need: structured control based on end-used demand
- Answers : an original approach based on global optimization (change the hegemony of SPD)
- Perspectives: generalization of the concept for nonlinear control, temporal specifications, etc...
- Others applications:

Control issue

Optimisation based control

AUV Control Application

Conclusions

References

Robots SHARC 2016

Control for

Context

Control issue Problem Statement Some answers... with drawbacks

Optimisation based control Global Optimizatio General pattern for

global optimizatio Application to H_{\odot}

AUV Contro Application

CISCREA: description and challenges

Robust control Results

Conclusions

These results are obtained with the collaboration of Jordan NININ (Associate Professor), Dominique MONNET (PhD Student) and Juan Luis ROSENDO (PhD Student)

- D. Arzelier, B. Clement et D. Peaucelle. Multi-objective H₂/H_∞/Impulse-to-Peak Control of a Space Launch Vehicle. European Journal of Control, vol. 12, no. 1, 2006
- N. Imbert et B. Clement. Launcher Attitude control : some answers to the robustness issue. In Proc. of 16th IFAC Symposium on Automatic Control in Aerospace, Saint-Petersburg, 2004
- D. Monnet, J. Ninin and B. Clement. Mathematical Aspects of Computer and Information Sciences, chapter Global Optimization of Hinfinity Problems : Application to Robust Control Synthesis Under Structural Constraints. Springer 2016
- J. Ninin, D. Monnet, and B. Clement. Global Optimization based on Contractor Programming. In 8th Small Workshop on Interval Methods, Prague, 2015
- J.L. Rosendo, B. Clement and F. Garelli, Sliding mode reference conditioning for path following applied to an AUV. In Proc. of 10th IFAC Conference on Control Applications in Marine Systems, Norway, 2016.

< ロト < 同ト < ヨト < ヨト