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Abstract: This paper presents a control synthesis methodology for a cubic AUV. The modeling
part is based on CFD calculation and the control part is based on H∞ theory, nonlinear
compensation, Smith compensation and Kalman filter. It is presented and adapted to Ciscrea
AUV for heading control. A comparison with PID controller is given with simulations and sea
tests.
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1. INTRODUCTION

Underwater vehicles have a large variety of types and they
are widely involved in undersea surveillance, inspection
and survey missions (Clement (2013b)). Typically, AUVs
and gliders are common with a torpedo shape for long
range missions, and Human Occupied Vehicles (HOVs) as
well as Remote Operating Vehicles (ROVs) are generally of
a cubic shape used for hovering tasks. Note that, for some
specific applications: undersea pipeline inspection, offshore
infrastructure surveillance and large vessel maintenance, a
small size cubic AUV is preferred. Indeed, small AUVs
can be deployed to explore areas which are not accessible
to HOVs and ROVs. Meanwhile, the cubic shaped AUVs
enjoy more degrees of freedom than torpedo-shaped AUVs.
Indeed, they can hover and enter complex underwater
spaces.

Achieving good maneuverability of small AUV depends on
two key factors: an accurate hydrodynamic model and an
advanced control system. Yamamoto (Aug., 2001) pointed
out that a model-based control system is more efficient if
the dynamics of the vehicle are modeled to some extent.
Meanwhile, Ferreira et al. (April, 2012) show that an
empirical linear model often fails to represent the dynamics
of the AUV over a wide operating region. In this work, we
adopt our previously published model (Yang et al. (2015)).

Regardless of modeling issues, the value of a model-based
control approach depends on how robust and efficient the
control scheme can adopt the hydrodynamic model. Poten-
tial trends of current methods focus on faster controllers to
assist the pilot or the autopilot with better accuracy. Op-
timal controllers can reduce propelling actions to save the
battery power as well as to increase the propeller lifespan.
Moreover, numerous uncertainties should be considered,
including parameter variations, nonlinear hydrodynamic
damping effects, sensor transmit delays and ocean current
disturbances. In robotic competitions (SAUC-E and eu-
Rathlon), it has been shown that a PID yaw controller was
less efficient for a low mass AUV. Consequently, advanced

Fig. 1. CISCREA AUV picture in the test pool of ENSTA
Bretagne

Table 1. CISCREA AUV main characteristics

Size 0.525m (L) 0.406m (W) 0.395m (H)

Weight in air 15.56 kg (without payload and floats)

Degrees of Freedom Surge, Sway, Heave and Yaw

Propulsion 2 vertical and 4 horizontal propellers

Speed 2 knots (Surge) & 1 knot (Sway, Heave)

Depth Rating 50m

On-board Battery 2-4 hours

control algorithms should be involved, such as the adaptive
control scheme by Maalouf et al. (Feb., 2013), interval
analysis approach by Jaulin and Le Bars (2012). Note
that robust control schemes are shown to be successfully
by Feng and Allen (Feb., 2004) and Roche et al. (pp. 17-
24, Sep., 2010) for torpedo-shaped AUVs. In this work,
we appointed the CISCREA AUV shown in Figure 1 and
main characteristics are given in Table 1.

This work is organized as follows. AUV main notions,
Ciscrea model and its derivative equations for control
design are presented in Section 2. A control scheme based
on nonlinear feedback and H∞ optimization is proposed in
Section 3. Section 4 shows the Matlab simulation results
of H∞ and PID controllers. In addition, the improved
H∞ scheme adaption and sea tests are presented. It is
important to note that the validation is performed from



simulation to real envirionment like it has been done for
other robots (Clement (2013a)).

In this paper, we propose a original embedded control
structure simple model oriented; using Kalman filters,
the unmeasured and noisy system states are estimated.
A Smith compensator is introduced to compensate the
magnetic compass delay. The system uncertainties are
dealt with H∞ theory. The experiment and simulation
results show the advantages of the proposed CFD model
based H-infinity methods compared with PID controller.

2. AUV MODELING

This section is dedicated to describe the AUV modeling
notions as well as the dynamic and hydrodynamic parame-
ters of Ciscrea AUV. A yaw model is derived in this section
for robust heading control design. Note that, modeling
data in this section comes from our previous CFD works
(Yang et al. (2015)).

2.1 AUV Modeling Notions

Ciscrea AUV dynamics are represented marine vehicle
formulation by Fossen (2002) and by the Society of Naval
Architects and Marine Engineers (SNAME (April 1950)).
Positions, angles, linear and angular velocities, force and
moment definitions are reflected in Tab 2. The position
vector η, velocity vector ν and force vector τ are defined
as follows:

η = [x, y, z, φ, θ, ψ]T ;
ν = [u, v, w, p, q, r]T ;
τ = [X,Y, Z,K,M,N ]T

Table 2. The notation of SNAME

Positions and
Angles

Velocities Forces and
Moments

Coordinate NED-frame B-frame B-frame

Surge x u X

Sway y v Y

Heave z w Z

Roll φ p K

Pitch θ q M

Yaw ψ r N

According to Fossen (2002), rigid-body hydrodynamic
forces and moments can be linearly superimposed. There-
fore, the overall non-linear underwater model can be char-
acterized by two parts, the rigid-body dynamic (1) and
hydrodynamic formulations (2) (hydrostatics included):

MRB ν̇ + CRB(ν)ν = τenv + τhydro + τpro (1)

τhydro = −MAν̇ − CA(ν)ν −D(|ν|)ν − g(η) (2)

Table 3 describes the parameters of this model. Due to
the size of the matrices and the figures needed to show all
the numerical values, the reader can refear to the paper
dedicaded to modeling (Yang et al. (2015)).

For the Ciscrea AUV, the rigid-body mass inertia ma-
trix MRB is simplified due to symmetry. Here, rG =
[xG, yG, zG]T is the vector from Ob (origin of B-frame) to
CG (center of gravity).

CRB and CA contribute to the centrifugal force. Note
that a practical way to calculate these two matrices using

Table 3. Nomenclature of the notations

Parameter Description

MRB AUV rigid-body mass and inertia matrix
MA Added mass matrix
CRB Rigid-body induced coriolis-centripetal matrix
CA Added mass induced coriolis-centripetal matrix
D(|v|) Damping matrix
g(η) Restoring forces and moments vector
τenv Environmental disturbances (wind, waves and cur-

rents)
τhydro Vector of hydrodynamic forces and moments
τpro Propeller forces and moments vector

MRB ,MA and ν is introduced in Marine System Simulator
(MSS (2010)). In our case, these two matrices can be
neglected due to the low speed to be considered, C(v) ≈ 0.
For an AUV with neutral buoyancy, the weight W is
approximately equal to the buoyancy force B.

For Ciscrea AUV, CB (the buoyancy center) and CG
are located using trials and errors method by adding and
removing the payload and floats. The marine disturbances,
such as the wind, waves and currents are related to the
environmental effect τenv. However for a deep sea un-
derwater vehicle, only current should be considered since
wind and waves have negligible effects. Two hydrody-
namic parameters added mass, MA ∈ R6×6, and damping,
D(|ν|) ∈ R6×6, should be carefully involved in the AUV
model. Added mass is a virtual conception representing
the hydrodynamic forces and moments. Any accelerating
emerged-object would encounter thisMA due to the inertia
of the fluid. For a cubic-shaped AUV, added mass in some
directions are generally larger than the rigid-body mass
as explained by Yang et al. (May, 2014). Damping in the
fluid consists of four parts: Potential damping DP (|ν|),
skin friction DS(|ν|), wave drift damping DW (|ν|) and vor-
tex shedding damping DM (|ν|). For the CISCREA AUV,
quadratic damping is the main dynamic nonlinearity of
the system (Yang et al. (May, 2014)).

2.2 Ciscrea model

For applying the methodology to the Ciscrea AUV, Mass
inertia matrix,MRB , is calculated using PRO/ENGINEER
software, and added mass matrix, MA, is calculated us-
ing WAMITTM based on radiation/diffraction program.
Finally, STAR-CCM+TM software and real world experi-
ments are conducted to estimate the relationship among
damping forces, damping moments, vehicle velocities and
angular velocities. In Yang et al. (May, 2014, 2015), second
order polynomial lines are implemented to approximate
the relationship between damping and velocities.

2.3 Yaw model

Without loss of generality, we only present the robust con-
troller in yaw direction. The rotational model is simplified
as in (3) (neglecting buoyancy and gravity). Definitions
and parametric values, such as inertia and damping coef-
ficients, are listed in Table 4. Note that, all the param-
eters have uncertainties, as they are either measured or
numerically calculated. The uncertainties will be carefully
discussed and treated using H∞ solution in section 3.

(IY RB + IY A)ẍr +DY N |ẋt|ẋr +DY Lẋr = τi (3)



Table 4. Rotational model parameters for yaw
direction

Parameter Description Value

IY RB Rigid-body inertia 0.3578kg ·m2

IY A Added mass inertia 0.138kg ·m2

DY N Nominal quadratic damping factors Ideal 0.2496
DY L Nominal linear damping factors Ideal 0.021
ẋr Angular Velocity 0 to 4rad/s
τi Torque input 0 to 6N ·m
τcom Compensation Torque 0 to 6N ·m
ẋr0 Equilibrium velocity 0 to 4rad/s
DY ND CFD quadratic damping factors 0.1479
DY LD CFD linear damping factors 0.0013
DY LA Artificial linear factors <Motor limit
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Fig. 2. Ciscrea H∞ heading control scheme with nonlinear
and delay compensations, Kalman filter and linear
H∞ controller.

3. CONTROL STRUCTURE

In this section, an original struture is proposed. It is based
on H∞ theory, nonlinear compensation, Smith compensa-
tion and Kalman filter. It is presented and adapted to
Ciscrea AUV for heading control. The proposed structure
is given on figure 2. One can see the various parts of the
control.

We propose a framework to :

• change the nonlinear yaw model into a linear system
with uncertainties based on previous modeling works
(here is an important contribution that shows the
links between control and modeling);
• tune a Kalman filter if only few sensors are used

(compass in our case);
• tune a Smith compensator for the delay due to the

low cost sensor;
• solve a H∞ controller for the linear system.

3.1 Nonlinear compensation

In this part, we discuss the nonlinear problem without
concern of parametric uncertainties, such as inertia and
damping coefficient errors. As shown in Yang et al. (May,
2014), damping is a major nonlinear component in the
AUV model. Therefore, in Figure 3, we propose to com-
pensate nonlinear behaviors using the CFD yaw model, as
feedback for real world propellers.

The nonlinear compensation is given in equation (4).

τcom = (DY LA −DY LD −DY ND|ẋr|)ẋr (4)

where:
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Fig. 3. Nonlinear Compensator allows linear synthesis

• DY LA is the artificial linear factor given in Tab 4.
• DY ND and DY LD are CFD damping estimations.

The linear model result of compensation is given in equa-
tion (5).

(DY LA + (DY N |ẋr| −DY ND|ẋr|+DY L −DY LD))ẋr
+(IY RB + IY A)ẍr = τi

(5)

The term δ = DY N |ẋr| − DY ND|ẋr| + DY L − DY LD is
calculated as an uncertainty added to DY LA. Generally,
this δ is small comparing to DY LA. If we calculate δ using
that:

ẋr ∈ [−4, 4] rad/s; DY LA=1.8; DY N=0.2496;
DY L=0.021; DY ND=0.1479; DY LD=0.0013;

we can consider that DY LA is a nominal parameter which
has a dynamic uncertainty of 23.7%.

(IY RB + IY A)ẍr + (DY LA + δ)ẋr = τi

δ ∈ [−0.4265, 0.4265]
(6)

At the end, the proposed model, equation (6), is a linear
system with uncertainties. Therefore, H∞ approach is
feasible for this model as it is proposed in figure 3.

3.2 Linear controller: H∞ synthesis

Let us consider the following classical state space repre-
sentation of a linear time invariant (LTI) system:[

ẋ
z
y

]
=

[
A B1 B2

C1 D11 D12

C2 D21 D22

][
x
w
u

]
(7)

where x ∈ Rn is the state vector, u ∈ Rm2 the control
input, y ∈ Rp1 system output, w ∈ Rm1 the external input
vector, z ∈ Rp2 the error vector. The robust design process
is to find a LTI feedback controller K, such that the
closed-loop system remains stable and is able to achieve
given performances in presence of uncertainties (Gu et al.
(2005); Zhou and Doyle (1998)). Generally, cost functions
for finding K are represented by H∞ norms of the closed-
loop transfer functions from w to z, as seen in equation
(8).

min
Kstable

∥∥∥∥∥∥∥
Wp(I +GK)−1

We(I +GK)−1

WuK(I +GK)−1

∥∥∥∥∥∥∥
∞

< γ (8)

Here, K is the robust controller in Figure 4, and G is the
linear nominal yaw model. The nominal model is derived
from the linear fractional transformation (LFT) technique,
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which separates uncertainties into an individual block (Gu
et al. (2005)).

In H∞ theory, weighting functions are introduced for set-
ting control specifications. Generally, it is difficult to get
the accurate frequency characteristics of external input
signals. Therefore, weighting functions are sometimes the
upper bound that covers original signals. For example,
the weighting function Wp, which represents the frequency
characteristics of the external disturbance, is used to de-
scribe output disturbance rejection ability. Satisfying the
above norm inequality indicates that the closed-loop sys-
tem indeed reduces the disturbance effects to a prescribed
level.

Finding appropriate weighting functions is critical and
difficult, trials are necessary for a successful robust control
design. In this application, we choose a structure with
three weighting functions as it can be seen in Figure 4.
We is chosen as a reference tracking error requirement,
Wu represents the input disturbance rejection. Wp, which
restricts the output disturbance, is the same specification
with We, but with different objectives.

Weighting function parameters are selected according to
equations (9) to (11). Wu is selected to be a very small
scalar (Gu = 0.01) for disturbance rejection. We choose
We and Wp according to Gu et al. (2005) and Roche et al.
(pp. 17-24, Sep., 2010), carefully considered the robust
margins, tracking error (1%) and fast response.

Wp(s) = 0.95
s2 + 1.8s+ 10

s2 + 8s+ 0.01
(9)

We(s) = 0.5
s+ 0.92

s+ 0.0046
(10)

Wu(s) = 0.01 (11)

To solve the H∞ problem, one can use the Riccati method
or Linear Matrix Inequality (LMI) approach Zhou and
Doyle (1998). Usually, we prefer to choose the LMI ap-
proach, as it requires less initial conditions (Gu et al.
(2005)). The resulting transfers are given in Figure 5.

3.3 Delay compensation

First, underwater vehicles might not be equipped with
enough sensors to detect all the states, such as the angular
velocity ẋr. In addition, the magnetic compass may en-
counter serious signal delay and noise injection. Therefore,
we propose to use a CFD model based kalman filters,
numerically estimating unmeasured as well as noisy states.
In addition, model based compensation algorithms are
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Fig. 5. Sensitivity Functions and inverse of weighting
functions
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Fig. 6. Ciscrea H∞ heading control delay and noise prob-
lem

recommended to deal with the sensor delay. The proposed
H∞ approach is completed as it is shown in Figure 2.

In order to reveal the magnetic compass delay as well
as noise injections on the rotational motion of CISCREA
AUV, A less tuned H∞ heading controller was demon-
strated in Figure 6. Among the Kalman angle estimation
and magnetic compass output, an obvious 0.5s delay was
observed. In this case, the delay lead to distinct heading
control oscillations. Meanwhile, there exist noise efforts on
the control output to propellers.

For Ciscrea heading control application, a classical Smith
compensator was introduced by Zhong (2006) to compen-
sate the magnetic compass delay, see Figure 7 and equation
(12).

P (s) = G0(s)−G0(s)e−0.5s (12)

The main idea is to estimate current delay free output y
from the nominal model G0(s) and real output ye(−0.5+δ)s.
Figure 8 shows the H∞ heading control simulation results
using Smith predictor compensation.



Fig. 7. Smith Predictor struture for delay compensation
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Fig. 8. Improved Ciscrea H∞ heading controller (Smith
Compensation)
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Fig. 9. Improved Ciscrea H∞ heading controller (Kalman
Compensation)

In addition, as robust controller is insensitive to compensa-
tion errors, we are enlighten to propose another compen-
sation scheme using Kalman angular velocity estimation
(ẋr), see equation (13).

y = P (s)u+ ye(−0.5+δ)s, y = Kcẋr + ye(−0.5+δ)s,Kc > 0
(13)

A Kc = 0.57 was tuned which has an efficient compensa-
tion result in Figure 9.

4. SIMULATION AND EXPERIMENTS

4.1 Heading control simulation

In the simulation, IY RB + IY A and DY LA are considered
to be two varying parameters, which have respectively
30% and 40% (> 23.7%) of variations. In Figure 10,
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Fig. 10. Step Response and Propellor Output on Nominal
Yaw Model
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Fig. 11. Step Response and Propellor Output with 30% of
interia variation

step responses of three scenarios are represented: PID
control, damping compensatedH∞ approach and bareH∞
control. From the simulation comparison, we can conclude
that compensated H∞ controller handles the nonlinearity
with the fastest response. Compensated H∞ controller has
no overshot and oscillations during the rotation process.
Tracking error achieves the specification less than 1%. To
emphasize the speed and robustness of our approach, we
inject a small disturbance of 0.5rad on the output at 50s.
Figure 11 shows the robust performance of our controller
handling a yaw model with 30% inertia variations.

4.2 Ciscrea Sea Test

The proposed control scheme has been validated on Cis-
crea in sea tests, and its results are compared with a
traditional PID approach, respectively shown in Figures
12 and 13. First, H∞ heading controller is faster than
PID scheme (even with low battery conditions). Second,
there is no nonlinearity induced oscillations in the control
output, and the tracking accuracy is better. Third, from
the propeller thrust signal, we can determine that the
magnetic compass noise and disturbances are well rejected,
while PID is less efficient to handle those uncertainties.
Finally, the characteristics of our controller result in an
optimal and smooth propulsion, which saves the battery
energy, and allows to increase the working range.
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Fig. 12. Ciscrea H∞ heading control sea experiment
(Kalman compensation)
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Fig. 13. Ciscrea PID heading control sea experiment (Brest
Port)

5. CONCLUSION

We have presented an efficient CFD model based H∞
control method to improve the motion performance of
AUVs with uncertainties. It has been validated on the
heading control scenario of low-mass and complex-shaped
Ciscrea AUV in sea tests. Experimental and simulation
results have proved that CFD model based H∞ has many
advantages comparing to PID controller:

• faster in time response for a step demand;
• free from nonlinearity induced oscillations and over-

shoot (CFD compensation);
• free from sensor delay induced oscillations (Delay

compensation); efficient noise and disturbance rejec-
tion (Kalman filter and H∞ perfomance constraints);
• not sensitive to parametric variation uncertainties

(Robustness);
• optimal and smooth propulsion orders.

The proposed robust heading control application demon-
strates a high quality AUV motion control solution, and
finally it uses only one compass as feedback sensor.
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