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Ambitions

1. Autonomous vehicles are becoming increasingly prevalent in our day-
to-day activities with strengthen productivity, accuracy, operational
efficiency and improved safety for human operators’ and users'’.

i : Reinforcement learning with data-driven simulation
Machine Learning A 9
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A big problem: autonomy in AUVS

Maritime robotic student projects at ENSTA Bretagne
Source: https://guerledan.ensta-bretagne.fr/actualites
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Principal challenges

* Unknown dynamics

* Nonlinearities

Thomas
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ROS package

Python/C++
(GitHub)

Learning-based
Adaptive Control
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Historical solution: adaptive control

“To adapt is to change something in
order to make it suitable for a new
use or situation.”

Oxford English Dictionary

NASA research pilot Neil Armstrong following a mission in the
first X-15 rocket plane. Image via NASA Dryden Flight
Research Center.

Adaptive Control and the NASA X-15-3 Flight Revisited,
by Z. T. Dydek et al., in IEEE Control systems, 2010.
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Significant barriers in AUVS

* Things we do not know how to model
* Things me can not measure

 Complexity of simulations

Thomas
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AGENDA (thesis overview)

Background
 Literature Review and Theory
Empirical works
« Merging RL and Adaptive Control
 Maximum Entropy RL
« Taking inspiration from biological replay mechanism
« Sim-to-real Transfer
Conclusion

 Current and Future Research
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A potential solution: learning-based

{a‘c(t) = f1(t, x,w) +£,(t,x,p)
y(t) = h(t,x,u)

Model-free
Learning

Model-based
Structure

Deep Reinforcement
Learning

Thomas
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Overall ambition

Leaming with simulators Operating in real environment
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Related works

Deep reinforcement learning based optimal trajectory tracking control of autonomous underwater vehicle, by
R.Yu et al., in 36" Chinese Control Conference, 2017.

Reinforcement learning-based adaptive trajectory planning for AUVs in under-ice environments, by C. Wang et
al., in OCEANS MTS/IEEE Charleston, 2018.

Deep learning for station keeping of AUVs, by K. B. Knudsen et al., in OCEANS 2019 MTS/IEEE SEATTLE, 2019.

e
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Preliminary works

PID Tuning using Cross-Entropy Deep Learning: a Lyapunov Stability Analysis, by H. Kohler, T. Chaffre et al., in
Conference on Control Applications in Marine Systems, Robotics and Vehicles, 2022.
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Objective

R — Parameter
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I Outputs I
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Simulated environment

A novel learning-based adaptive control approach.
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Merging RL and Adaptive Control

Model-based structure (feedback controller):

u=kye, + kimin[f er dt, Umax] + kqa((L —1)ér_1 +1é;)

Pole-placement: C(s) = det(sI — (A — BK))

Step Response

Thomas . -
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Merging RL and Adaptive Control

|A—BK — M| = —2(A(kq + 1) + k,) — k;,
—A3 — Ak, — Ak, — k;,
= 0.
The desired A; are solutions of 13 + A%k, + Ak, + k; = 0.

We proposed A; = _T—_l, the pole-placement design is thenx:
l

f—l kg kp .
= 0

— k k
;+ g— p+ki:O

*Direct Adaptive Pole-Placement Controller using Deep Reinforcement Learning:
Application to AUV Control, T. Chaffre et al, IFAC CAMS, 2021.

Thomas
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Merging RL and Adaptive Control

With KT = M~1N we can derive the mapping: Learning-based
Adaptation

1 Stable Gains K, K; Kd
T1T2T3

—

ki=

T, + T, + T3 | Stable space

kp p—— 5 B of Poles
- v )%Q_f
T1Ty + T1 T3 + ToT3 Tmin — % —
kd B T1TrT3 i e T
T

Action space bounds:
Desired maximum error tolerance

/ (in percentage)
B —ln(O 05)

Tmin = 0.025; Ty =3.33

\ \ Desired maximum settling time (in

Based on physical limits of the seconds)
platform L
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Maximum entropy RL

Stochastic adaptive control:

T : S € R120 - A4 c R39,
x = [s¢] o [ ]

where 1; is modeled by a Gaussian distributions N (7;) such as:

N(t;) = 2mp;)~?exp {_Ziu-(x - /11')2}»

where A; € R, u; € R are the mean and variance of NV (t;).

Thomas
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Maximum entropy RL

1. Actor-Critic architecture

2. Maximum entropy framework

3. Off-policy formulation

Thomas
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Maximum entropy RL

1. Actor-Critic architecture

Actor 1: choose the best action to execute.
Critic Q : tells the actor how good this choice was.

Using Bellman equations:

Actor

action

Policy

Update following
Critic Policy gradient

Qr(st, ar) = [E 2 Vth+k+1| St = st, Ar = a;]
k=0

St » Value function
V(st)

D
Learning

n(acls;) = arg max Qn (st ar)

reward

state

Thomas

CHAFFRE Learning-based adaptive control of AUV



Maximum entropy RL

2. Maximum entropy framework

|

S Q(spay) Q(se ar)
%~ :‘r; ‘ e,

/ (a,ls) exp[g((sstt; a,)]
a;
Go left Go right

Thomas
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Maximum entropy RL

2. Maximum entropy framework

Equivalent to:
min DKL (r(- |50)|1exp{Q(s0,)})
Up to an additive constant, it is equal to:
Jmaxentro(|sg) = max Er[Q(So,ag) —logm(aglso)],
which we can further decompose as:

]maxEntrop(T[lSO) = m;lX [En[Ztr(St: at) + a}((ﬂ(' |St))|50]-

Thomas
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Maximum entropy RL

3. Off-Policy formulation

The optimal policy can be estimated using samples from any policies:

m,(als)

p(als)

V,J(w) = Eg Q™ (s,a)V, log nﬂ(als)]

Experience Replay (ER) concept:

* The agent experience is store in a Replay Buffer.
e At each timestep, mini-batch gradient is performed using samples
from the Replay Buffer.

Thomas
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Taking inspiration from biological replay mechanism

Missing biological elements*

e Replay (in biological systems) is temporally structured.

* Replay is modulated by reward and only a few selected
experiences are replayed.

e Replay is treated differently for novel version non-novel inputs.

Thomas
CHAFFRE
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Taking inspiration from biological replay mechanism

Standard ER and limits

A deeper look at Experience Replay, Richard S. Sutton et al., 2018.

Algorithm 3: Combined-Q

Initialize the value function ()
Initialize the replay buffer M
while not converged do

Get the initial state S

while S is not the terminal state do i i
Select an action A according to a e-greedy policy derived from ) CO m b I n e d EX p e r I e n Ce
Execute the action A, get the reward R and the next state 5"
Store the transition ¢ = (S, A, R, 5") into the replay buffer M Re p I ay (C E R)

Sample a batch of transitions B from M
Update the value function @ with B and {

S« 9
end

end

Revisiting fundamentals of Experience Replay, Yoshua Bengio et al., 2020.

* Increasing replay capacity lower chance of overfitting.
* Learning in high quality regions (as measured by reward) leads to further gains.
* Increasing replay capacity with fixed replay ratio has varying performance. )’

Thomas
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Taking Inspiration from biological replay mechanism

B1 Highest quality
regions of the
environment

Incomplete B2
temporal =— /
sequences M

L |

Sequential-Partial Optimistic
Memory Memory

~
== ==p Temporally correlated RS ‘-/
sampling.

MINI-BATCH

—p Temporally uncorrelated

sampling.
» Adds regularization effect If r(sy) > E.[r(s,)]
* Reduces age of oldest policy Because A(s,a) = Q(s,a) — V(s)

Thomas
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Sim-to-Real Transfer

Pool limits

* Precision of positioning
system: 3-4 centimeters
after calibration.

Path followed

* Evaluated 2 control
7-th setpoint systems against 2
operating conditions
- | (with and without
' current disturbance).

e Each controller is
performing the task 10
times and performance

I
[
I
I
I
I
I
I
' are average results.

[llustration of the task for the experimental validation.

Thomas
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Sim-to-Real Transfer

The thrusters are controlled through ESC input that we set to 1625, which according to Blue
Robotics documentation gives around 8 Newtons of thrust per thruster. The total current draw for
the pair is approximately 2.7A, providing a power draw of around 38 Watts.

Thomas
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Sim-to-Real Transfer

Reward function:

T(St) — exp_(eLZ(t))

“Euclidean distance”
to the setpoint

Thomas
CHAFFRE

Table 5.2: List of hyperparameters and their values for experimental validation.

Training hyperparameter | Value

SAC version 2 (see Section 2.2.8)
Activation function Leaky RelLU
Optimizer (all networks) Adam [KB15]
Learning rate (all networks) 3x 101

Discount factor () 0.99

Mini-batch size 256

Target network smoothing coefficient (A)
Delayed update trick [FHM18]

Critics L2 regularization

Layer Normalization [BKH16] (all networks)
Automatic temperature adjustment

Replay buffer max size

Replay start size

Experience Replay method

0.005 (see Section 2.2.8)
True

0.001

True

True

1e6

1ed

BIER (see Section 3.3.3)

Learning-based adaptive control of AUV




Sim-to-Real Transfer

Randomized environmental complexity
as domain randomization™

Sim-to-Real Transfer with Incremental Environment Complexity
for Reinforcement Learning of Depth-Based Robot Navigation

Thomas Chaffre, Julien Moras, Adrien Chan-Hon-Tong, Julien Marzat

DTIS, Palaiseau
www.onera.fr/copernic

ONERA

THE FRENCH AEROSPACE LAB

*Sim-to-Real Transfer with Incremental Environment Complexity for Reinforcement Learning
of Depth-Based Robot Navigation, T. Chaffre et al, ICINCO, 2020. L

Thomas
CHAFFRE
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Sim-to-Real Transfer

Thomas
CHAFFRE

Environment configuration 1

EPISODE ENDED EPISODE STARTING

Environment configuration 2

Environment configuration 3

[llustration of the proposed domain randomization method. We proposed to
divide the training environment in three configurations in terms of environment
complexity. At the beginning of each episode, the environment characteristics are
set to one of these configuration with an equal probability P for each case.

Learning-based adaptive control of AUV



Training

Activités ] Terminal ~

9

rmalized return

Thomas
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launch_Dual.launch http://localhost:11311

Fichier Edition Affichage Rechercher Terminal Aide

e logging to /home/thomasc/.ros/log/511ce6c8-19bd-11ec
-b1d9-557c9d36£895/roslaunch- thomasc-Zephyrus-5-GX531Gv- [\ | =0 |'
GX535GV-3808.1og -
Checking log directory for disk usage. This may take a w

hile.

Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://thomasc-Zephyrus-S-GX531
GV-GX535GV:43793/

SUMMARY

PARAMETERS

Jrexrov2/mainDual/base_link: base_link
* [rexrov2/mainDual/comparison_mode: False
/rexrov2/mainDual/fin_topic_prefix: fins
/rexrov2/mainDual/fin_topic_suffix: input
J/rexrov2/mainDual/inertial_frame_id: world
/rexrov2/mainDual/is_underactuated: True
/rexrov2/mainDual/max_fin_angle: 1.396263402
/rexrov2/mainDual/max_forward_speed: 2
/rexrov2/mainDual/max_thrust: 120
/rexrov2/mainDual/min_thrust: ©
/rexrov2/mainDual/n_fins: 4
* [rexrov2/mainDual/thruster_config/conversion_fcn: pro
portional
* [rexrov2/mainDual/thruster_config/conversion_fcn_para
ms/gain: 4.9e-05
* [rexrov2/mainDual/thruster_config/frame_base: thruste
-
* [rexrov2/mainDual/thruster_config/max_thrust: 120
* [rexrov2/mainDual/thruster_config/topic_prefix: thrus
ters
* [rexrov2/mainDual/thruster_config/topic_suffix: input
/rexrov2/mainDual/thruster_topic: thrusters/0/input
Jrosdistro: melodic
/rosversion: 1.14.10
/stage_number: 1

Rk kR K * F ¥

*
*
*
*

NODES
/rexrov2/
mainDual (rl_control_uuv/mainDual.py)

ROS_MASTER_URI=http® lhost:1131% a
Jopt/ros/melodic/lib/plthdh2.7 -Apckige W rdE 1 /pRkl
ages.py:470: UnicodeWalinirly: e BquBl mppri§on a

iled to convert both arguments to Unicode - interpreting
them as being unequal
if resource_name in files:
process[rexrov2/mainDual-1]: started with pid [3823] Real Time:
Device used: cuda:@

Learning-based adaptive control of AUV

lun. 04:50

Fichier Edition Affichage Rechercher Terminal Aide

[Msg] JointStatePublisher::robotNamespace=rexrov2
[Msg] JointStatePublisher::Retrieving moving joints:
[Msg] rexrov2/thruster_0_joint

[Msg] rexrov2/thruster_1_joint

[Msg] rexrov2/thruster_2_joint

[Msg] rexrov2/thruster_3_joint

[Msg] rexrov2/thruster_4_joint

thg] rexrov2/thruster_5_joint

Fichier Edition Affichage Rechercher Terminal Aide

[INFO] [1632106182.409956, 35.966000]: Initial position wrt the wor
1d frame: (0.00, 0.00, -20.00)

[INFO] [1632106182.411310, 35.968000]: Waiting for service /gazebo/
spawn_urdf_model

[INFO] [1632106182.414034, 35.970000]: Calling service /gazebo/spaw
n_urdf_model

[INFO] [1632106182.826851, 36.104000]: Spawn status: SpawnModel: Su
ccessfully spawned entity

[rexrov2/urdf_spawner-1] process has finished cleanly

log file: /home/thomasc/.ros/log/511ce6c8-19bd-11ec-b1d9-557c9d36f8
95/rexrov2-urdf_spawner-1*.log |

sichier Edition Affichage Rechercher Terminal Aide
0.94614574 -0.79952524 0.79952534 0.2178764 0.217
0. 0.33117442 0.33117433 -0.76388992 0.763

INFO] [1632106191.716983, 44.472000]: TAM provided, skipping...
INFO] [1632106191.732781, 44.486000]: ThrusterManager: ready
INFO] [1632106191.738699, 44.490000]: Invalid output directory for
he TAM matrix, dir=None

INFO] [1632106191.743252, 44.496000]: ThrusterManager: ready

Reset Time

Setpoint RMSE




Results: without disturbance
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Results: with disturbance

0.40 -

66L96Y7'

0.30 -

mmmm | earning-based
mmmm Model-based

0.05

Tracking RMSE
o o
] 8]
(=] (8]

[=]
=
L

=]

0.00 - \ . \ \ \ \ \ \ \
1 2 3 4 5 6 7 8 9
Setpoint number

Thomas

CHAFFRE Learning-based adaptive control of AUV




Current research

7 Peer-reviewed papers

Ros package on private GitHub
Ongoing :

* Nonlinear adaptive control structure
e Real life reinforcement learning

e Multi-tasks / multi-agents

Thomas
CHAFFRE
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Future research

e Offline Reinforcement Learning

Offline Q-Learning on Diverse Multi-Task Data Both Scales And Generalizes, by A. Kumar et al., 2022.

Offline RL With Realistic Datasets: Heteroskedasticity and Support Constraints, by A. Singh et al., 2022.

Pre-Training for Robots: Offline RL Enables Learning New Tasks from a Handful of Trials, by A. Kumar et al., 2022.

Don't Start From Scratch: Leveraging Prior Data to Automate Robotic Reinforcement Learning, by H. Walke et al., 2022.

* Internal disturbances

Next PhD student (Katell Lagattu CIFRE Naval Group)

* Reducing value overestimation

Why generalization in rl is difficult: Epistemic pomdps and implicit partial observability, by D. Ghosh at al., 2021.
Value Function Spaces: Skill-Centric State Abstractions for Long-Horizon Reasoning, by D. Shah et al., 2021.
How to train your robot with deep reinforcement learning: lessons we have learned, by J. Ibarz et al., 2021.

Thomas . -
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Trajectories: with disturbance
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Trajectories: with disturbance
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Position Y with the MB controller.
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Position Y with the LB controller.




Trajectories: with disturbance
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Trajectories: with disturbance
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Experimental setup

2 thrusters T200 are fixed
on the aluminum arm.

The camera is
fixed at the
end of the
aluminum
arm.

Thomas . .
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Experimental setup

=]
]
B

& X Ko LK

| W

Illustration of the experiments setup.
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Neural network architecture

[ Policy network ] r Q-Value network 1 [ State-Value network ]

State (s¢) | n

State (s n Actions (a

Input Layer '
(sp) | n Input Layer

Q;,Q Input Layer
Tt Guad Intp R )1
Hidden Layer 1 . — = ——
Leaky RelU | 256 @@? Hidden Layer 1 Hidden Layer 1
Leaky RelU | 256
Hidden Layer 2 | e — T Leaky RelV | 256
Leaky RelU | 256 Hidden Layer 2 =] Hidden Layer 2
rl Leaky RelU | 256 Leaky RelU | 256

v <
Mean Layer Standard deviation Layer Ouput Layer | 1
Leaky RelU | 18 Leaky RelU | 18 \35/ E‘S Ouput Layer | 1
Clamp [ log std min , log std max ] Q‘Value StatE'Value
h |
; With:
Actions = TanH[ N(mean. elog “d]] . Adam

e Layer Norm (# Batch Norm)
* L2 weight decay on Critics only (0.001)
* Soft target update (A = 0.005) and delayed update (from TD3 algorithm)

Thomas
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Proposed learning-based controller

_____ P Adaptive < o
I — Pole-Placement l
| 1 Poles Outputs
: On-line control |
Policy i Mapping :
gradientl lGains »
I Setpoint PID Control inputs :
_* :
' Controller ! \
Soft | |
Actor-Critic I = |
e, A - |
off pOIICY . Off-line learning | v |
TD Learning ., = —="——---—---"—- I
|

|
‘ BIER j‘ _____
Experience

{se a1, Ses1)
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Experimental protocol

Simulated training:
e Station keeping under several process variations.
* Observation vector o; includes: AUV state, setpoint errors, last poles
estimates, last control inputs, distance to setpoint (dim = 42).
» State vector s; = [0} ; 0¢_1 ; 0,1 — 0¢](dim = 126).

Simulated evaluation:

* Same task.

* 6 scenarios of varying complexity.
* Lyapunov stability analysis.

Real life evaluation:

e Same task.

e 2 scenarios of varying complexity to increase distribution shift.
 Comparison to an optimal fixed model-based version (OFP) of the controller.

Thomas
CHAFFRE
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Simulated evaluation

Thomas
CHAFFRE

EVALUATION RESULTS FOR THE CER METHOD (LEFT) AND THE PROPOSED BIER METHOD (RIGHT).

Scenario Mean RMSE per step Normalized mean return Mean RMSE per step Normalized mean return
Baseline 0.0364 0.9104 + 0.0461 0.0330 0.9219 -+ 0.0250
1 0.0370 0.9072 + 0.0309 0.0366 0.9347 + 0.0262
2 0.0350 09108 + 0.0456 0.0320 0.9244 + 0.0240
3 0.0448 0.8774 + 0.0416 0.0418 0.9124 + 0.0266
4 0.1483 0.4078 + 0.2965 0.1214 0.5071 + 0.2530
5 0.1656 0.3556 + 0.2846 0.1508 0.4289 + 0.2573
6 0.1802 0.3238 + 0.2219 0.1637 0.3966 + 0.2167
-0.225
’f
05 ! 0.200
)
€ - PR 1 . -0.175
3 . - a
E 0.6 r g -0.150 @
s e CER 7/ | a
E == BIER II y L 0.125 g
B OFP 7/ ©
= 04 / / =
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Simulated evaluation
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Assessing controller stabllity

-—i}” ” .0 "\ Lyapunov-based ANN-based
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*PID Tuning using Cross-Entropy Deep Learning: a Lyapunov Stability Analysis, By Hector Kohler, Benoit
Clement, Thomas Chaffre, Gilles Le Chenadec, in IFAC Conference on Control Applications in Marine :
Systems, Robotics and Vehicles, 2022. L
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Experimental outcomes

* The control performance of the LB controller is
between 2 and 2.4 times greater.

e The variance of the LB controller is
between 1.48 and 3.1 times better smaller.

* The principal cause of failures is drift in yaw.

 The worst DoF is depth due to estimation error.

Thomas
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In practice

The entropy is added in the State-Value function:

V(se) =E |Q(se,ar) + a¥t (m,(lsy) )|

=E [Q(St' a;) — alog ﬂu(at|5t)]
The target policy distribution is the exponential of the
Q-Value distribution:

exp(min[Q; (5¢,at),Q2 (st,at)]))
. .

Ju(m) = Dy, 150)

Maximum entropy RL with automatic temperature adjustment

]maxEntrop(Tflso) = mnax Er[Xer(se ar) + a}[(n(- |St))|50]-

— _ . — 1
JautoEntrop (a) = [Est~D,at~n[ alogm(: |s;) — adH]
L in practice , in order to make sure that a is non-negative we parametrize a; = exp{f;} and we optimize f3; instead.

Thomas
CHAFFRE
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| oss functions

Unbiased estimator of the Policy gradient:

V )
VJ, (@) =V, logm,(als;) + (J)

(Vg, log ﬂu(atlst) — Vg, min[ Q4 (s,a), Q. (s, a)])VHfH(Et; St)

TD learning for the Critics:
J(V) =V(st) — (min[Q (s¢, ar), Q2(s¢, ar)| — log ﬂy(' |5¢))
J(Q) = Q(s¢ ap) — (rt +y X V(St+1))

The soft Q-update guarantees : Q™% > (Q°!d 1

And repeated policy updates (J) guarantees : m — *.1

IMathematical proofs are in appendix B of “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor”, T. Haarnoja et al.

Thomas
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Exploration strategy

Discrete environment/action spaces:
Epsilon-greedy, Thompson sampling, Upper Confidence Bounds, Boltzmann exploration...

Continuous environment/action spaces:

Passive exploration = noise-based exploration (e.g., entropy):
Parameter space noise for {+}Noise ‘
Exploration

(M. Plappert et al., OpenAl)

Noise

Input Input

Thomas
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Why not doing end-to-end RL?
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Fig. 5: Training curves showing the mean reward and success rate computed per
100 episodes over a moving window of 100 episodes. Note that with SAC, the
policy is trained to maximize also the entropy, therefore the mean action does
not always correspond to the optimal action for the maximum return objective.

Mean step | Mean total | Mean reward | Success Positive
Controller type i
number reward per step rate reward rate
Fixed Poles PID 488 710.797 1.454 50.6% 61.197%
Model-free 357 2238.970 6.256 74.2% 86.056%
Learning-based 281 4034.434 14.346 91.6% 89.2%

Table 1: Evaluation results.
Learning-based vs Model-free Adaptive Control of a MAV under Wind Gust (T. Chaffre et al, )’
Book Chapter, LNEE by SPRINGER 2021)

Thomas
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Learning-based adaptive control of AUV



Classification of RL methods

Thomas
CHAFFRE

agent
interacts
learn/provide
l experience
model learn
build
value
planning '
pooling policy
sampling
> actions ————d

[llustration of RL methods based on the nature of the decision making process. The difference
between the solutions methods is captured by how the actions are determined: in model
based methods, the actions are the result of deterministic planning, in value based methods
the actions are pooled over the entire set of possible actions, and in policy gradient methods
the actions are sampled from a probability density function
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SAC Limits
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lllustration of performance with fixed (left) and
automatic temperature parameter (right).
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Moving target values

@ Without target network, initially everything @ But the target value move as our Q-value
look normal. We chase the target value... function estimate improves...

Current .
estimate Target .
value

@ . Resulting to increasing oscillations... @ Which can eventually make us diverge.

e

@
=
[
S 300
>
E I EEEEEEEEEEEEE NN N ENEEEEEEEEEEEENEEEE E mEED
By freezing or making the target value move @ We can make progress toward it before... E
slowly... &

|
<5
Il

1 m 7 =0.01

200
/.\)0 == — 0.1 = True Value
@ @ 150

S

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e5)

@ We update it and change it. This make the @ Allowing us to reach a good value estimate.
whole algorithm more stable...
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