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Ambitions

1. Autonomous vehicles are becoming increasingly prevalent in our day-

to-day activities with strengthen productivity, accuracy, operational 

efficiency and improved safety for human operators’ and users’.

2. Breakthroughs in deep learning are changing how people design 

control system for such systems.

3. There are potential opportunities to leverage these changes for 

underwater applications where this trend is different.
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A big problem: autonomy in AUVs
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Maritime robotic student projects at ENSTA Bretagne
Source: https://guerledan.ensta-bretagne.fr/actualites
Maritime robotic student projects at ENSTA Bretagne

Source: https://guerledan.ensta-bretagne.fr/actualites
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Principal challenges
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• Unknown dynamics

• Nonlinearities
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Research spectrum
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PhD Thesis

ROS package

Python/C++ 
(GitHub)

Multiple vehicles 
(ECA A9, BlueRov 2, 
RexRov)

Multiple tasks (target 
rallying, station keeping, 
output regularization)

Multiple algorithms 
(DDPG, SAC-v1, 

SAC-v2, TD3)

Multiple domains 
(terrestrial, aerial, 
underwater)

Learning-based 
Adaptive Control

Gains-Poles

Mapping

Incremental VS 
Direct placement

DAPP

Maximum 
Entropy RL

Experience 
Replay

Bio-Inspired 
Experience 
Replay

Sim-to-real

Transfer

Domain 
Randomization

Randomized 
Environmental 
Complexity

Exploration

in RL

Passive 
exploration

Parameter 
Noise

7 peer-reviewed 
papers
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Historical solution: adaptive control
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“To adapt is to change something in
order to make it suitable for a new
use or situation.”

Oxford English Dictionary

NASA research pilot Neil Armstrong following a mission in the 
first X-15 rocket plane. Image via NASA Dryden Flight 

Research Center.

Adaptive Control and the NASA X-15-3 Flight Revisited, 
by Z. T. Dydek et al., in IEEE Control systems, 2010.
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Significant barriers in AUVs
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• Things we do not know how to model

• Things me can not measure

• Complexity of simulations
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AGENDA (thesis overview)

Background

• Literature Review and Theory

Empirical works

• Merging RL and Adaptive Control

• Maximum Entropy RL

• Taking inspiration from biological replay mechanism

• Sim-to-real Transfer

Conclusion

• Current and Future Research
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A potential solution: learning-based
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Model-based 
Structure

Model-free 
Learning

Learning-Based

ቊ
ሶ𝑥 𝑡 = 𝑓1 𝑡, 𝑥, 𝑢

𝑦 𝑡 = ℎ 𝑡, 𝑥, 𝑢
+𝑓2 𝑡, 𝑥, 𝑝

Deep Reinforcement 
Learning
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Overall ambition

Thomas
CHAFFRE

Learning-based adaptive control of AUV 10/35



Related works
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Deep reinforcement learning based optimal trajectory tracking control of autonomous underwater vehicle, by
R. Yu et al., in 36th Chinese Control Conference, 2017.

Reinforcement learning-based adaptive trajectory planning for AUVs in under-ice environments, by C. Wang et
al., in OCEANS MTS/IEEE Charleston, 2018.

Deep learning for station keeping of AUVs, by K. B. Knudsen et al., in OCEANS 2019 MTS/IEEE SEATTLE, 2019.

Motion control of unmanned underwater vehicles via deep imitation reinforcement learning algorithm, by Z.
Chu et al., in IET Intelligent Transport Systems, 2020.
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Preliminary works
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Evaluation of a Deep-Reinforcement-Learning-based Controller for the Control of an Autonomous Underwater
Vehicle, by Y. Sola, T. Chaffre et al., in Global Oceans 2020: Singapore – U.S. Gulf Coast, 2020.
Learning-Based vs Model-Free Adaptive Control of a MAV Under Wind Gust, by T. Chaffre et al., in Lecture
Notes in Electrical Engineering book series (LNEE, volume 793), 2021.
PID Tuning using Cross-Entropy Deep Learning: a Lyapunov Stability Analysis, by H. Kohler, T. Chaffre et al., in
Conference on Control Applications in Marine Systems, Robotics and Vehicles, 2022.

Evolution of the vehicle state stability. Evolution of the control parameters stability.
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Objective
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A novel learning-based adaptive control approach.

13/35



Merging RL and Adaptive Control
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Model-based structure (feedback controller): 

𝑢 = 𝑘𝑝𝑒𝑡 + 𝑘𝑖min[න𝑒𝑡 ⅆ𝑡 , 𝑢𝑚𝑎𝑥] + 𝑘𝑑 1 − 𝑟 ሶ𝑒𝑡−1 + 𝑟 ሶ𝑒𝑡

Pole-placement: 𝐶 𝑠 = det(𝑠𝑰 − (𝑨 − 𝑩𝑲))
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Merging RL and Adaptive Control
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𝐴 − 𝐵𝐾 − 𝜆𝑰 = −𝜆 𝜆 𝑘𝑑 + 𝜆 + 𝑘𝑝 − 𝑘𝑖 ,

= −𝜆3 − 𝜆2𝑘𝑑 − 𝜆𝑘𝑝 − 𝑘𝑖 ,

= 0.
The desired 𝜆𝑖 are solutions of 𝜆3 + 𝜆2𝑘𝑑 + 𝜆𝑘𝑝 + 𝑘𝑖 = 0.

We proposed 𝜆𝑖 =
−1

𝜏𝑖
, the pole-placement design is then∗:

−1

𝜏1
3 +

𝑘𝑑

𝜏1
2 −

𝑘𝑝

𝜏1
+ 𝑘𝑖 = 0

−1

𝜏2
3 +

𝑘𝑑

𝜏2
2 −

𝑘𝑝

𝜏2
+ 𝑘𝑖 = 0

−1

𝜏3
3 +

𝑘𝑑

𝜏3
2 −

𝑘𝑝

𝜏3
+ 𝑘𝑖 = 0

*Direct Adaptive Pole-Placement Controller using Deep Reinforcement Learning: 
Application to AUV Control , T. Chaffre et al, IFAC CAMS, 2021.
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Merging RL and Adaptive Control
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With KT = M−1N we can derive the mapping:

𝑘𝑖 =
1

τ1τ2τ3

𝑘𝑝 =
τ1 + τ2 + τ3

τ1τ2τ3

𝑘𝑑 =
τ1τ2 + τ1τ3 + τ2τ3

τ1τ2τ3

Action space bounds:

𝜏𝑚𝑖𝑛 = 0.025 ; 𝜏𝑚𝑎𝑥 =
−ln(0.05)

10
= 3.33

Desired maximum settling time (in 
seconds)

Desired maximum error tolerance 
(in percentage)

Based on physical limits of the 
platform
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Maximum entropy RL
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Stochastic adaptive control:

πΩ ∶ 𝑆 ⊂ ℝ120 → 𝐴 ⊂ ℝ36,
𝑥 = 𝑠𝑡 ↦ [𝜆𝑖 , 𝜇𝑖]

where 𝜏𝑖 is modeled by a Gaussian distributions 𝒩(𝜏𝑖) such as:

𝒩 𝜏𝑖 = (2𝜋𝜇𝑖)
−1/2exp −

1

2𝜇𝑖
𝑥 − 𝜆𝑖

2 ,

where 𝜆𝑖 ∈ 𝑅, 𝜇𝑖 ∈ 𝑅+ are the mean and variance of 𝒩 𝜏𝑖 . 
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Maximum entropy RL
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1. Actor-Critic architecture

2. Maximum entropy framework

3. Off-policy formulation
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Maximum entropy RL
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1. Actor-Critic architecture

Actor 𝜋: choose the best action to execute.
Critic 𝑄 : tells the actor how good this choice was.

Using Bellman equations:

𝑄𝜋 𝑠𝑡, 𝑎𝑡 = [𝔼෍

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡

𝜋∗ 𝑎𝑡 𝑠𝑡 = 𝑎𝑟𝑔max
𝜋

𝑄𝜋(𝑠𝑡, 𝑎𝑡)
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Maximum entropy RL
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1. e
2. Maximum entropy framework

Go left Go right

𝑸(𝒔𝒕, 𝒂𝒕)

𝒂𝒕

𝑸(𝒔𝒕, 𝒂𝒕)

Agent

Target 𝝅(𝒂𝒕|𝒔𝒕) ∝
exp[𝑸 𝒔𝒕, 𝒂𝒕 ]

𝒁(𝒔𝒕)
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Maximum entropy RL
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Equivalent to:

min
𝜋

𝐷𝐾𝐿(𝜋(⋅ |𝑠0)| exp 𝑄 𝑠0,⋅ )

Up to an additive constant, it is equal to:

𝐽𝑚𝑎𝑥𝐸𝑛𝑡𝑟𝑜 𝜋 𝑠0 = max
𝜋

𝔼𝜋[𝑄 𝑠0, 𝑎0 − log𝜋(𝑎0|𝑠0)] ,

which we can further decompose as:

𝐽𝑚𝑎𝑥𝐸𝑛𝑡𝑟𝑜𝑝 𝜋 𝑠0 = max
𝜋

𝔼𝜋[σ𝑡 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛼𝓗 𝜋 ⋅ 𝑠𝑡 |𝑠0].

1. e
2. Maximum entropy framework
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1. e
2. d
3. Off-Policy formulation

Maximum entropy RL
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The optimal policy can be estimated using samples from any policies:

∇𝜇𝐽 𝜇 = 𝔼𝛽
𝜋𝜇 𝑎 𝑠

𝛽 𝑎 𝑠
𝑄𝜋 𝑠, 𝑎 ∇𝜇 log 𝜋𝜇 𝑎 𝑠

Experience Replay (ER) concept:

• The agent experience is store in a Replay Buffer.
• At each timestep, mini-batch gradient is performed using samples 

from the Replay Buffer.
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Taking inspiration from biological replay mechanism
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Missing biological elements*

• Replay (in biological systems) is temporally structured.

• Replay is modulated by reward and only a few selected 
experiences are replayed.

• Replay is treated differently for novel version non-novel inputs.
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Taking inspiration from biological replay mechanism
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Standard ER and limits

Combined Experience 
Replay (CER)

A deeper look at Experience Replay, Richard S. Sutton et al., 2018.

Revisiting fundamentals of Experience Replay, Yoshua Bengio et al., 2020.

• Increasing replay capacity lower chance of overfitting.
• Learning in high quality regions (as measured by reward) leads to further gains.
• Increasing replay capacity with fixed replay ratio has varying performance.
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Taking inspiration from biological replay mechanism
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If 𝐫(𝐬𝐭) > 𝔼𝝅[𝒓 𝒔𝒕 ]
Because 𝑨 𝒔, 𝒂 = 𝑸 𝒔, 𝒂 − 𝑽(𝒔)

• Adds regularization effect
• Reduces age of oldest policy
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Sim-to-Real Transfer
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Illustration of the task for the experimental validation.

• Precision of positioning 
system: 3-4 centimeters 
after calibration.

• Evaluated 2 control 
systems against 2 
operating conditions 
(with and without 
current disturbance).

• Each controller is 
performing the task 10 
times and performance 
are average results.
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Sim-to-Real Transfer
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The thrusters are controlled through ESC input that we set to 1625, which according to Blue
Robotics documentation gives around 8 Newtons of thrust per thruster. The total current draw for
the pair is approximately 2.7A, providing a power draw of around 38 Watts.
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Sim-to-Real Transfer
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𝑟(𝑠𝑡) = 𝑒𝑥𝑝−(𝑒𝐿2(𝑡))

“Euclidean distance” 
to the setpoint

Reward function:
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Sim-to-Real Transfer
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*Sim-to-Real Transfer with Incremental Environment Complexity for Reinforcement Learning
of Depth-Based Robot Navigation, T. Chaffre et al, ICINCO, 2020.

Randomized environmental complexity
as domain randomization*
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Sim-to-Real Transfer
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Illustration of the proposed domain randomization method. We proposed to
divide the training environment in three configurations in terms of environment
complexity. At the beginning of each episode, the environment characteristics are
set to one of these configuration with an equal probability P for each case.
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Setpoint RMSE

Training
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*The OFP controller is obtained using
the model-based optimal method
named SMAC from “Sequential
Model Based Optimization for
General Algorithm Configuration”,
book chapter of Learning and
Intelligent Optimization, 2011.

Normalized return Normalized return std
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Results: without disturbance
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Results: with disturbance
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Current research

Thomas
CHAFFRE

Learning-based adaptive control of AUV

7 Peer-reviewed papers

Ros package on private GitHub

Ongoing :

• Nonlinear adaptive control structure

• Real life reinforcement learning

• Multi-tasks / multi-agents
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Why generalization in rl is difficult: Epistemic pomdps and implicit partial observability, by D. Ghosh at al., 2021.
Value Function Spaces: Skill-Centric State Abstractions for Long-Horizon Reasoning, by D. Shah et al., 2021.
How to train your robot with deep reinforcement learning: lessons we have learned, by J. Ibarz et al., 2021.

Future research
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• Offline Reinforcement Learning

• Internal disturbances

• Reducing value overestimation

Offline Q-Learning on Diverse Multi-Task Data Both Scales And Generalizes, by A. Kumar et al., 2022.
Offline RL With Realistic Datasets: Heteroskedasticity and Support Constraints, by A. Singh et al., 2022.
Pre-Training for Robots: Offline RL Enables Learning New Tasks from a Handful of Trials, by A. Kumar et al., 2022.
Don't Start From Scratch: Leveraging Prior Data to Automate Robotic Reinforcement Learning, by H. Walke et al., 2022.

Next PhD student (Katell Lagattu CIFRE Naval Group)
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Trajectories: with disturbance
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Position Y with the MB controller. Position Y with the LB controller.
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Trajectories: with disturbance
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Position Z with the MB controller. Position Z with the LB controller.

Learning-based adaptive control of AUV

Trajectories: with disturbance
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Orientation with the MB controller.

Orientation with the LB controller.

Learning-based adaptive control of AUV

Trajectories: with disturbance
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Illustration of the disturbance generator and tracking system for pose estimation.
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Experimental setup
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Illustration of the experiments setup.
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Experimental setup
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With:
• Adam
• Layer Norm (≠ Batch Norm)
• L2 weight decay on Critics only (0.001)
• Soft target update (Δ = 0.005) and delayed update (from TD3 algorithm)

Learning-based adaptive control of AUV

Neural network architecture
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Proposed learning-based controller
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Simulated training:
• Station keeping under several process variations.
• Observation vector 𝑜𝑡 includes: AUV state, setpoint errors, last poles 

estimates, last control inputs, distance to setpoint (dim = 42).
• State vector 𝑠𝑡 = 𝑜𝑡 ; 𝑜𝑡−1 ; 𝑜𝑡−1 − 𝑜𝑡 (ⅆ𝑖𝑚 = 126).

Simulated evaluation:
• Same task.
• 6 scenarios of varying complexity.
• Lyapunov stability analysis.

Real life evaluation:
• Same task.
• 2 scenarios of varying complexity to increase distribution shift.
• Comparison to an optimal fixed model-based version (OFP) of the controller.

Learning-based adaptive control of AUV

Experimental protocol
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Simulated evaluation
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Simulated evaluation
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*PID Tuning using Cross-Entropy Deep Learning: a Lyapunov Stability Analysis, By Hector Kohler, Benoit
Clement, Thomas Chaffre, Gilles Le Chenadec, in IFAC Conference on Control Applications in Marine
Systems, Robotics and Vehicles, 2022.

Parameter 
space

ANN-basedLyapunov-based

OR

?

Learning-based adaptive control of AUV

Assessing controller stability
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• The control performance of the LB controller is 
between 2 and 2.4 times greater.

• The variance of the LB controller is                  
between 1.48 and 3.1 times better smaller.

• The principal cause of failures is drift in yaw.

• The worst DoF is depth due to estimation error.

Learning-based adaptive control of AUV

Experimental outcomes



The entropy is added in the State-Value function:

𝑉 𝑠𝑡 = 𝔼 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼𝓗 𝜋𝜇 . 𝑠𝑡

= 𝔼 𝑄 𝑠𝑡 , 𝑎𝑡 − 𝛼 log 𝜋𝜇(𝑎𝑡|𝑠𝑡)

The target policy distribution is the exponential of the 
Q-Value distribution:

𝐽𝜇 𝜋 = 𝐷𝐾𝐿 𝜋𝜇(. |𝑠𝑡) ฬ
exp(min[𝑄1(𝑠𝑡,𝑎𝑡),𝑄2(𝑠𝑡,𝑎𝑡)])

𝑍
.

Thomas
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Maximum entropy RL with automatic temperature adjustment
𝐽𝑚𝑎𝑥𝐸𝑛𝑡𝑟𝑜𝑝 𝜋 𝑠0 = max

𝜋
𝔼𝜋[σ𝑡 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛼𝓗 𝜋 ⋅ 𝑠𝑡 |𝑠0].

𝐽𝑎𝑢𝑡𝑜𝐸𝑛𝑡𝑟𝑜𝑝 𝛼 = 𝔼𝑠𝑡∼𝐷,𝑎𝑡∼𝜋 −𝛼 log𝜋 ⋅ 𝑠𝑡 − 𝛼𝓗 1

¹ In practice , in order to make sure that α is non-negative we parametrize 𝛼𝑡 = exp 𝛽𝑡 and we optimize 𝛽𝑡 instead. 

Learning-based adaptive control of AUV

In practice



Unbiased estimator of the Policy gradient:

෡∇𝜇𝐽𝜇 𝜋 = ∇𝜇 log 𝜋𝜇 𝑎𝑡 𝑠𝑡 +

(∇𝑎𝑡 log 𝜋𝜇 𝑎𝑡 𝑠𝑡 − ∇𝑎𝑡min[𝑄1 𝑠, 𝑎 , 𝑄2 𝑠, 𝑎 ])∇𝜇𝑓𝜇(𝜖𝑡; 𝑠𝑡)

TD learning for the Critics:
𝐽 𝑉 = 𝑉 𝑠𝑡 − (min 𝑄1 𝑠𝑡 , 𝑎𝑡 , 𝑄2 𝑠𝑡 , 𝑎𝑡 − log 𝜋𝜇 ⋅ 𝑠𝑡 )

𝐽 𝑄 = 𝑄 𝑠𝑡 , 𝑎𝑡 − 𝑟𝑡 + 𝛾 × 𝑉 𝑠𝑡+1

The soft Q-update guarantees : 𝑄𝑛𝑒𝑤 > 𝑄𝑜𝑙𝑑 .1

And repeated policy updates (J) guarantees : 𝜋 → 𝜋∗.1

¹Mathematical proofs are in appendix B of “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor”, T. Haarnoja et al.

Thomas
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(J)

Learning-based adaptive control of AUV

Loss functions



Thomas
CHAFFRE

Discrete environment/action spaces:
Epsilon-greedy, Thompson sampling, Upper Confidence Bounds, Boltzmann exploration…

Continuous environment/action spaces:
Epsilon-greedy, Thompson sampling, Upper Confidence Bounds, Boltzmann exploration…

Passive exploration → noise-based exploration (e.g., entropy):

Parameter space noise for
Exploration 
(M. Plappert et al., OpenAI)

Learning-based adaptive control of AUV

Exploration strategy
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Learning-based vs Model-free Adaptive Control of a MAV under Wind Gust (T. Chaffre et al, 
Book Chapter, LNEE by SPRINGER 2021)

Learning-based adaptive control of AUV

Why not doing end-to-end RL?



Thomas
CHAFFRE

Illustration of RL methods based on the nature of the decision making process. The difference
between the solutions methods is captured by how the actions are determined: in model
based methods, the actions are the result of deterministic planning, in value based methods
the actions are pooled over the entire set of possible actions, and in policy gradient methods
the actions are sampled from a probability density function

Learning-based adaptive control of AUV

Classification of RL methods
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Illustration of performance with fixed (left) and 
automatic temperature parameter (right).

Learning-based adaptive control of AUV

SAC Limits
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Moving target values
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